Spaces:
Runtime error
Runtime error
panotedi
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
from tensorflow.keras.applications.resnet50 import ResNet50
|
4 |
+
from tensorflow.keras.preprocessing import image
|
5 |
+
from tensorflow.keras.applications.resnet50 import preprocess_input
|
6 |
+
from sklearn.neighbors import NearestNeighbors
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
+
import glob
|
10 |
+
import os
|
11 |
+
|
12 |
+
resnet_model = ResNet50(weights='imagenet')
|
13 |
+
|
14 |
+
st.title("CS634 - Assignment 3")
|
15 |
+
|
16 |
+
user_image_input = st.file_uploader("Upload Images", type=["jpg"])
|
17 |
+
|
18 |
+
|
19 |
+
path='lfw/V*'
|
20 |
+
photos=[]
|
21 |
+
for fold in glob.glob(path, recursive=True):
|
22 |
+
for subdir, dirs, files in os.walk(fold):
|
23 |
+
for file in files:
|
24 |
+
#st.write(file)
|
25 |
+
photos.append(os.path.join(subdir, file))
|
26 |
+
|
27 |
+
photos.insert(0,"")
|
28 |
+
celebrity_photo = st.selectbox("Select Photo",photos)
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
def extract_features(photos, resnet_model):
|
33 |
+
features = {}
|
34 |
+
for photo in photos:
|
35 |
+
if(photo!=""):
|
36 |
+
img = image.load_img(photo, target_size=(224, 224))
|
37 |
+
x = image.img_to_array(img)
|
38 |
+
x = np.expand_dims(x, axis=0)
|
39 |
+
x = preprocess_input(x)
|
40 |
+
|
41 |
+
features_vector = resnet_model.predict(x)
|
42 |
+
features_vector = features_vector.flatten()
|
43 |
+
features[photo] = features_vector
|
44 |
+
|
45 |
+
return features
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
if(len(celebrity_photo) != 0):
|
51 |
+
#st.image(user_image_input, caption=None, width=None, use_column_width=None, clamp=False, channels="RGB", output_format="auto")
|
52 |
+
user_input_image = None
|
53 |
+
st.write(celebrity_photo)
|
54 |
+
#st.write(user_image_input.read())
|
55 |
+
size=len(photos)
|
56 |
+
#st.write(size)
|
57 |
+
st.write("Query Image: ")
|
58 |
+
st.image(celebrity_photo)
|
59 |
+
features = extract_features(photos, resnet_model)
|
60 |
+
|
61 |
+
features_array = np.array(list(features.values()))
|
62 |
+
|
63 |
+
nn_model = NearestNeighbors(n_neighbors=11, metric='euclidean')
|
64 |
+
nn_model.fit(features_array)
|
65 |
+
|
66 |
+
query_image_path = photos[size-1]
|
67 |
+
query_image_feature = features[query_image_path].reshape(1, -1)
|
68 |
+
distances, indices = nn_model.kneighbors(query_image_feature)
|
69 |
+
|
70 |
+
|
71 |
+
st.write("Similar Images:")
|
72 |
+
for i in range(1,11):
|
73 |
+
similar_image_path = photos[indices[0][i]]
|
74 |
+
similar_image_distance = distances[0][i]
|
75 |
+
st.write("Similar Image #{}: Distance: {}".format(i, similar_image_distance))
|
76 |
+
st.image(similar_image_path)
|
77 |
+
|
78 |
+
|
79 |
+
if(user_image_input != None):
|
80 |
+
celebrity_photo = []
|
81 |
+
#st.image(user_image_input, caption=None, width=None, use_column_width=None, clamp=False, channels="RGB", output_format="auto")
|
82 |
+
im = Image.open(user_image_input)
|
83 |
+
im=im.resize((224,224))
|
84 |
+
im.save("input_image.jpg", "JPEG")
|
85 |
+
photos.append("input_image.jpg")
|
86 |
+
#st.write(user_image_input.read())
|
87 |
+
size=len(photos)
|
88 |
+
#st.write(size)
|
89 |
+
st.write("Query Image: ")
|
90 |
+
st.image(photos[size-1])
|
91 |
+
features = extract_features(photos, resnet_model)
|
92 |
+
|
93 |
+
features_array = np.array(list(features.values()))
|
94 |
+
|
95 |
+
nn_model = NearestNeighbors(n_neighbors=11, metric='euclidean')
|
96 |
+
nn_model.fit(features_array)
|
97 |
+
|
98 |
+
query_image_path = photos[size-1]
|
99 |
+
query_image_feature = features[query_image_path].reshape(1, -1)
|
100 |
+
distances, indices = nn_model.kneighbors(query_image_feature)
|
101 |
+
|
102 |
+
|
103 |
+
st.write("Similar Images:")
|
104 |
+
for i in range(1,11):
|
105 |
+
similar_image_path = photos[indices[0][i]]
|
106 |
+
similar_image_distance = distances[0][i]
|
107 |
+
st.write("Similar Image #{}: Distance: {}".format(i, similar_image_distance))
|
108 |
+
st.image(similar_image_path)
|
109 |
+
#else:
|
110 |
+
# size=len(photos)
|
111 |
+
# st.write(size)
|
112 |
+
# st.image(photos[size-1])
|
113 |
+
# features = extract_features(photos, resnet_model)
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|