File size: 8,793 Bytes
8f7ac8f
 
 
 
 
 
 
 
4873e8b
 
8f7ac8f
028d725
89ce7bf
 
 
4873e8b
8f7ac8f
 
4873e8b
 
89ce7bf
8f7ac8f
028d725
4873e8b
8f7ac8f
 
 
 
4873e8b
8f7ac8f
 
4873e8b
8f7ac8f
 
4873e8b
89ce7bf
8f7ac8f
028d725
4873e8b
 
 
028d725
4784ef2
028d725
4784ef2
 
 
 
 
 
c450b97
4784ef2
 
028d725
4784ef2
 
9d0ee1c
6f472e5
4873e8b
9d0ee1c
4784ef2
 
 
028d725
 
 
4873e8b
028d725
4784ef2
028d725
4873e8b
 
 
028d725
 
4873e8b
 
 
 
 
 
028d725
 
 
4873e8b
 
 
028d725
4873e8b
 
 
 
 
 
 
 
 
c450b97
4873e8b
 
 
 
 
028d725
 
 
4873e8b
028d725
4784ef2
4873e8b
 
 
 
 
028d725
4873e8b
028d725
 
 
 
4784ef2
 
 
028d725
 
 
89ce7bf
028d725
 
4784ef2
4873e8b
 
028d725
 
89ce7bf
4784ef2
 
 
 
 
 
4873e8b
 
028d725
4873e8b
8f7ac8f
028d725
9d0ee1c
 
 
89ce7bf
 
4873e8b
89ce7bf
9d0ee1c
 
4873e8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
028d725
4873e8b
 
 
 
 
 
 
 
 
 
89ce7bf
4873e8b
 
 
028d725
c450b97
 
 
028d725
4873e8b
c450b97
8f7ac8f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import gradio as gr
import torch
from transformers import AutoImageProcessor, TimesformerForVideoClassification
import cv2
from PIL import Image
import numpy as np
import time
from collections import deque
import base64
import io

# --- Configuration ---
# CHANGED: Using a public Facebook TimesFormer model fine-tuned on Kinetics
HF_MODEL_REPO_ID = "facebook/timesformer-base-finetuned-kinetics"

MODEL_INPUT_NUM_FRAMES = 8
TARGET_IMAGE_HEIGHT = 224
TARGET_IMAGE_WIDTH = 224
RAW_RECORDING_DURATION_SECONDS = 10.0
FRAMES_TO_SAMPLE_PER_CLIP = 20
DELAY_BETWEEN_PREDICTIONS_SECONDS = 120.0 # 2 minutes for CPU, adjust for GPU

# --- Load Model and Processor ---
print(f"Loading model and processor from {HF_MODEL_REPO_ID}...")
try:
    processor = AutoImageProcessor.from_pretrained(HF_MODEL_REPO_ID)
    model = TimesformerForVideoClassification.from_pretrained(HF_MODEL_REPO_ID)
except Exception as e:
    print(f"Error loading model: {e}")
    exit()

model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
print(f"Model loaded on {device}.")
print(f"Model's class labels (Kinetics): {model.config.id2label}") # Print new labels

# --- Global State Variables for Live Demo ---
raw_frames_buffer = deque()
current_clip_start_time = time.time()
last_prediction_completion_time = time.time()
app_state = "recording" # States: "recording", "predicting", "processing_delay"

# --- Helper function to sample frames ---
def sample_frames(frames_list, target_count):
    if not frames_list:
        return []
    if len(frames_list) <= target_count:
        return frames_list
    indices = np.linspace(0, len(frames_list) - 1, target_count, dtype=int)
    sampled = [frames_list[int(i)] for i in indices]
    return sampled

# --- Main processing function for Live Demo Stream ---
def live_predict_stream(image_np_array):
    global raw_frames_buffer, current_clip_start_time, last_prediction_completion_time, app_state

    current_time = time.time()
    pil_image = Image.fromarray(image_np_array)

    if app_state == "recording":
        raw_frames_buffer.append(pil_image)
        elapsed_recording_time = current_time - current_clip_start_time
        
        yield f"Recording: {elapsed_recording_time:.1f}/{RAW_RECORDING_DURATION_SECONDS}s. Raw frames: {len(raw_frames_buffer)}", "Buffering..."

        if elapsed_recording_time >= RAW_RECORDING_DURATION_SECONDS:
            # Transition to predicting state
            app_state = "predicting"
            yield "Preparing to predict...", "Processing..."
            print("DEBUG: Transitioning to 'predicting' state.")

    elif app_state == "predicting":
        # Ensure this prediction block only runs once per cycle
        if raw_frames_buffer: # Only proceed if there are frames to process
            print("DEBUG: Starting prediction.")
            try:
                sampled_raw_frames = sample_frames(list(raw_frames_buffer), FRAMES_TO_SAMPLE_PER_CLIP)
                frames_for_model = sample_frames(sampled_raw_frames, MODEL_INPUT_NUM_FRAMES)

                if len(frames_for_model) < MODEL_INPUT_NUM_FRAMES:
                    yield "Error during frame sampling.", f"Error: Not enough frames ({len(frames_for_model)}/{MODEL_INPUT_NUM_FRAMES}). Resetting."
                    print(f"ERROR: Insufficient frames for model input: {len(frames_for_model)}/{MODEL_INPUT_NUM_FRAMES}. Resetting state.")
                    app_state = "recording" # Reset state to start a new recording
                    raw_frames_buffer.clear()
                    current_clip_start_time = time.time()
                    last_prediction_completion_time = time.time()
                    return # Exit this stream call to wait for next frame or reset

                processed_input = processor(images=frames_for_model, return_tensors="pt")
                pixel_values = processed_input.pixel_values.to(device)

                with torch.no_grad():
                    outputs = model(pixel_values)
                    logits = outputs.logits

                predicted_class_id = logits.argmax(-1).item()
                predicted_label = model.config.id2label.get(predicted_class_id, "Unknown")
                confidence = torch.nn.functional.softmax(logits, dim=-1)[0][predicted_class_id].item()

                prediction_result = f"Predicted: {predicted_label} (Confidence: {confidence:.2f})"
                status_message = "Prediction complete."
                print(f"DEBUG: Prediction Result: {prediction_result}")
                
                # Yield the prediction result immediately to ensure UI update
                yield status_message, prediction_result

                # Clear buffer and transition to delay AFTER yielding the prediction
                raw_frames_buffer.clear()
                last_prediction_completion_time = current_time
                app_state = "processing_delay"
                print("DEBUG: Transitioning to 'processing_delay' state.")

            except Exception as e:
                error_message = f"Error during prediction: {e}"
                print(f"ERROR during prediction: {e}")
                # Yield error to UI
                yield "Prediction error.", error_message
                app_state = "processing_delay" # Still go to delay state to prevent constant errors
                raw_frames_buffer.clear() # Clear buffer to prevent re-processing same problematic frames

    elif app_state == "processing_delay":
        elapsed_delay = current_time - last_prediction_completion_time
        
        if elapsed_delay < DELAY_BETWEEN_PREDICTIONS_SECONDS:
            # Continue yielding the delay message and the last prediction result
            yield f"Delaying next prediction: {int(elapsed_delay)}/{int(DELAY_BETWEEN_PREDICTIONS_SECONDS)}s", gr.NO_VALUE
        else:
            # Delay is over, reset for new recording cycle
            app_state = "recording"
            current_clip_start_time = current_time
            print("DEBUG: Transitioning back to 'recording' state.")
            yield "Starting new recording...", "Ready for new prediction."
    
    pass

def reset_app_state_manual():
    global raw_frames_buffer, current_clip_start_time, last_prediction_completion_time, app_state
    raw_frames_buffer.clear()
    current_clip_start_time = time.time()
    last_prediction_completion_time = time.time()
    app_state = "recording"
    print("DEBUG: Manual reset triggered.")
    # Return initial values immediately upon reset
    return "Ready to record...", "Ready for new prediction."

# --- Gradio UI Layout ---
with gr.Blocks() as demo:
    gr.Markdown(
        f"""
        # TimesFormer Action Recognition - Using Facebook Kinetics Model
        This Space hosts the `{HF_MODEL_REPO_ID}` model.
        Live webcam demo with recording and prediction phases.
        **NOTE: This model predicts general human actions (e.g., 'playing guitar', 'walking'), not crime events.**
        """
    )

    with gr.Tab("Live Webcam Demo"):
        gr.Markdown(
            f"""
            Continuously captures live webcam feed for **{RAW_RECORDING_DURATION_SECONDS} seconds**,
            then makes a prediction. There is a **{DELAY_BETWEEN_PREDICTIONS_SECONDS/60:.0f} minute delay** afterwards.
            """
        )
        with gr.Row():
            with gr.Column():
                webcam_input = gr.Image(
                    sources=["webcam"],
                    streaming=True,
                    label="Live Webcam Feed"
                )
                status_output = gr.Textbox(label="Current Status", value="Initializing...")
                reset_button = gr.Button("Reset / Start New Cycle")
            with gr.Column():
                prediction_output = gr.Textbox(label="Prediction Result", value="Waiting...")

        webcam_input.stream(
            live_predict_stream,
            inputs=[webcam_input],
            outputs=[status_output, prediction_output]
        )
        
        reset_button.click(
            reset_app_state_manual,
            inputs=[],
            outputs=[status_output, prediction_output]
        )

    with gr.Tab("API Endpoint for External Clients"):
        gr.Markdown(
            """
            Use this API endpoint to send base64-encoded frames for prediction.
            (Currently uses the Kinetics model).
            """
        )
        gr.Interface(
            fn=lambda frames_list: "API endpoint is active for programmatic calls. See documentation in app.py.",
            inputs=gr.Json(label="List of Base64-encoded image strings"),
            outputs=gr.Textbox(label="API Response"),
            live=False,
            allow_flagging="never"
        )


if __name__ == "__main__":
    demo.launch()