Spaces:
Sleeping
Sleeping
Commit
·
8f7ac8f
1
Parent(s):
482f1b7
first commit
Browse files- app.py +104 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoImageProcessor, TimesformerForVideoClassification
|
4 |
+
import cv2
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
import time
|
8 |
+
from collections import deque
|
9 |
+
|
10 |
+
# --- Configuration ---
|
11 |
+
# Your Hugging Face model repository ID
|
12 |
+
HF_MODEL_REPO_ID = "owinymarvin/timesformer-crime-detection"
|
13 |
+
|
14 |
+
# These must match the values used during your training
|
15 |
+
NUM_FRAMES = 16
|
16 |
+
TARGET_IMAGE_HEIGHT = 224
|
17 |
+
TARGET_IMAGE_WIDTH = 224
|
18 |
+
|
19 |
+
# --- Load Model and Processor ---
|
20 |
+
print(f"Loading model and image processor from {HF_MODEL_REPO_ID}...")
|
21 |
+
try:
|
22 |
+
processor = AutoImageProcessor.from_pretrained(HF_MODEL_REPO_ID)
|
23 |
+
model = TimesformerForVideoClassification.from_pretrained(HF_MODEL_REPO_ID)
|
24 |
+
except Exception as e:
|
25 |
+
print(f"Error loading model from Hugging Face Hub: {e}")
|
26 |
+
# Handle error - exit or raise exception for Space to fail gracefully
|
27 |
+
exit()
|
28 |
+
|
29 |
+
model.eval() # Set model to evaluation mode
|
30 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
+
model.to(device)
|
32 |
+
print(f"Model loaded successfully on {device}.")
|
33 |
+
print(f"Model's class labels: {model.config.id2label}")
|
34 |
+
|
35 |
+
# Initialize a global buffer for frames for the session
|
36 |
+
# Use a deque for efficient appending/popping from both ends
|
37 |
+
frame_buffer = deque(maxlen=NUM_FRAMES)
|
38 |
+
last_inference_time = time.time()
|
39 |
+
inference_interval = 1.0 # Predict every 1 second (1.0 / INFERENCE_FPS)
|
40 |
+
current_prediction_text = "Buffering frames..."
|
41 |
+
|
42 |
+
def predict_video_frame(image_np_array):
|
43 |
+
global frame_buffer, last_inference_time, current_prediction_text
|
44 |
+
|
45 |
+
# Gradio sends frames as numpy arrays (RGB)
|
46 |
+
pil_image = Image.fromarray(image_np_array)
|
47 |
+
frame_buffer.append(pil_image)
|
48 |
+
|
49 |
+
current_time = time.time()
|
50 |
+
|
51 |
+
# Only perform inference if we have enough frames and it's time for a prediction
|
52 |
+
if len(frame_buffer) == NUM_FRAMES and (current_time - last_inference_time) >= inference_interval:
|
53 |
+
last_inference_time = current_time
|
54 |
+
|
55 |
+
# Preprocess the frames. processor expects a list of PIL Images or numpy arrays
|
56 |
+
processed_input = processor(images=list(frame_buffer), return_tensors="pt")
|
57 |
+
pixel_values = processed_input.pixel_values.to(device)
|
58 |
+
|
59 |
+
with torch.no_grad():
|
60 |
+
outputs = model(pixel_values)
|
61 |
+
logits = outputs.logits
|
62 |
+
|
63 |
+
predicted_class_id = logits.argmax(-1).item()
|
64 |
+
predicted_label = model.config.id2label[predicted_class_id]
|
65 |
+
confidence = torch.nn.functional.softmax(logits, dim=-1)[0][predicted_class_id].item()
|
66 |
+
|
67 |
+
current_prediction_text = f"Predicted: {predicted_label} ({confidence:.2f})"
|
68 |
+
print(current_prediction_text) # Print to Space logs
|
69 |
+
|
70 |
+
# Return the current prediction text for display in the UI
|
71 |
+
return current_prediction_text
|
72 |
+
|
73 |
+
# --- Gradio Interface ---
|
74 |
+
# Create a streaming input for webcam
|
75 |
+
webcam_input = gr.Image(
|
76 |
+
sources=["webcam"], # Allows webcam input
|
77 |
+
streaming=True, # Enables continuous streaming of frames
|
78 |
+
shape=(TARGET_IMAGE_WIDTH, TARGET_IMAGE_HEIGHT), # Set expected input resolution
|
79 |
+
label="Live Webcam Feed"
|
80 |
+
)
|
81 |
+
|
82 |
+
# Output text box for predictions
|
83 |
+
prediction_output = gr.Textbox(label="Real-time Prediction")
|
84 |
+
|
85 |
+
|
86 |
+
# Define the Gradio Interface
|
87 |
+
# We use Blocks for more control over layout if needed, but Interface works too.
|
88 |
+
# For simplicity, we'll stick to a basic Interface
|
89 |
+
# For streaming, gr.Interface.load() is more common, but let's define from scratch.
|
90 |
+
|
91 |
+
demo = gr.Interface(
|
92 |
+
fn=predict_video_frame,
|
93 |
+
inputs=webcam_input,
|
94 |
+
outputs=prediction_output,
|
95 |
+
live=True, # Enable live updates
|
96 |
+
allow_flagging="never", # Disable flagging on public demo
|
97 |
+
title="TimesFormer Crime Detection Live Demo",
|
98 |
+
description=f"This demo uses a finetuned TimesFormer model ({HF_MODEL_REPO_ID}) to predict crime actions from a live webcam feed. The model processes {NUM_FRAMES} frames at a time and makes a prediction every {inference_interval} seconds. Please allow webcam access.",
|
99 |
+
# You might want to add examples for file uploads if you also want to support video files.
|
100 |
+
# examples=["path/to/your/test_video.mp4"] # If you add video upload input
|
101 |
+
)
|
102 |
+
|
103 |
+
if __name__ == "__main__":
|
104 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
opencv-python-headless # Use headless for server environments without display
|
4 |
+
Pillow
|
5 |
+
gradio
|