Spaces:
Running
Running
import streamlit as st | |
import tensorflow as tf | |
import numpy as np | |
from PIL import Image | |
import os | |
# === Fix font/matplotlib warnings === | |
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib" | |
os.environ["XDG_CACHE_HOME"] = "/tmp" | |
# === Custom loss and metrics === | |
def weighted_dice_loss(y_true, y_pred): | |
smooth = 1e-6 | |
y_true_f = tf.reshape(y_true, [-1]) | |
y_pred_f = tf.reshape(y_pred, [-1]) | |
intersection = tf.reduce_sum(y_true_f * y_pred_f) | |
return 1 - ((2. * intersection + smooth) / (tf.reduce_sum(y_true_f) + tf.reduce_sum(y_pred_f) + smooth)) | |
def iou_metric(y_true, y_pred): | |
y_true = tf.cast(y_true > 0.5, tf.float32) | |
y_pred = tf.cast(y_pred > 0.5, tf.float32) | |
intersection = tf.reduce_sum(y_true * y_pred) | |
union = tf.reduce_sum(y_true) + tf.reduce_sum(y_pred) - intersection | |
return intersection / (union + 1e-6) | |
def bce_loss(y_true, y_pred): | |
return tf.keras.losses.binary_crossentropy(y_true, y_pred) | |
# === Load Model === | |
model_path = "final_model_after_third_iteration_WDL0.07_0.5155/" | |
def load_model(): | |
return tf.keras.models.load_model( | |
model_path, | |
custom_objects={ | |
"weighted_dice_loss": weighted_dice_loss, | |
"iou_metric": iou_metric, | |
"bce_loss": bce_loss | |
} | |
) | |
model = load_model() | |
# === Inference Function === | |
def run_prediction(image): | |
image = image.convert("RGB").resize((512, 512)) | |
x = np.expand_dims(np.array(image), axis=0) | |
y = model.predict(x)[0, :, :, 0] | |
y_norm = (y - y.min()) / (y.max() - y.min() + 1e-6) | |
mask = (y_norm * 255).astype(np.uint8) | |
return Image.fromarray(mask) | |
# === Streamlit UI === | |
st.title("🕳️ Sinkhole Segmentation with EffV2-UNet") | |
example_dir = "examples" | |
example_files = sorted([f for f in os.listdir(example_dir) if f.lower().endswith((".jpg", ".png"))]) | |
# Display examples in columns | |
cols = st.columns(len(example_files)) | |
for i, filename in enumerate(example_files): | |
with cols[i]: | |
img_path = os.path.join(example_dir, filename) | |
example_img = Image.open(img_path) | |
st.image(example_img, caption=filename, use_column_width=True) | |
if st.button(f"Run on {filename}"): | |
st.subheader("Original Image") | |
st.image(example_img, use_column_width=True) | |
st.subheader("Predicted Mask") | |
result = run_prediction(example_img) | |
st.image(result, use_column_width=True) | |