Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import numpy as np
|
|
4 |
from PIL import Image
|
5 |
import os
|
6 |
|
7 |
-
# === Fix font/matplotlib warnings
|
8 |
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
|
9 |
os.environ["XDG_CACHE_HOME"] = "/tmp"
|
10 |
|
@@ -14,8 +14,7 @@ def weighted_dice_loss(y_true, y_pred):
|
|
14 |
y_true_f = tf.reshape(y_true, [-1])
|
15 |
y_pred_f = tf.reshape(y_pred, [-1])
|
16 |
intersection = tf.reduce_sum(y_true_f * y_pred_f)
|
17 |
-
return 1 - ((2. * intersection + smooth) /
|
18 |
-
(tf.reduce_sum(y_true_f) + tf.reduce_sum(y_pred_f) + smooth))
|
19 |
|
20 |
def iou_metric(y_true, y_pred):
|
21 |
y_true = tf.cast(y_true > 0.5, tf.float32)
|
@@ -27,7 +26,7 @@ def iou_metric(y_true, y_pred):
|
|
27 |
def bce_loss(y_true, y_pred):
|
28 |
return tf.keras.losses.binary_crossentropy(y_true, y_pred)
|
29 |
|
30 |
-
# === Load
|
31 |
model_path = "final_model_after_third_iteration_WDL0.07_0.5155/"
|
32 |
@st.cache_resource
|
33 |
def load_model():
|
@@ -42,25 +41,35 @@ def load_model():
|
|
42 |
|
43 |
model = load_model()
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
# === Streamlit UI ===
|
46 |
st.title("🕳️ Sinkhole Segmentation with EffV2-UNet")
|
47 |
|
48 |
-
|
49 |
-
if
|
50 |
-
image = Image.open(uploaded_image).convert("RGB")
|
51 |
-
st.image(image, caption="Original Image", use_column_width=True)
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
x = np.expand_dims(np.array(resized), axis=0)
|
56 |
-
y = model.predict(x)[0, :, :, 0]
|
57 |
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
65 |
|
66 |
-
st.image(result, caption="Predicted Segmentation", use_column_width=True)
|
|
|
4 |
from PIL import Image
|
5 |
import os
|
6 |
|
7 |
+
# === Fix font/matplotlib warnings ===
|
8 |
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
|
9 |
os.environ["XDG_CACHE_HOME"] = "/tmp"
|
10 |
|
|
|
14 |
y_true_f = tf.reshape(y_true, [-1])
|
15 |
y_pred_f = tf.reshape(y_pred, [-1])
|
16 |
intersection = tf.reduce_sum(y_true_f * y_pred_f)
|
17 |
+
return 1 - ((2. * intersection + smooth) / (tf.reduce_sum(y_true_f) + tf.reduce_sum(y_pred_f) + smooth))
|
|
|
18 |
|
19 |
def iou_metric(y_true, y_pred):
|
20 |
y_true = tf.cast(y_true > 0.5, tf.float32)
|
|
|
26 |
def bce_loss(y_true, y_pred):
|
27 |
return tf.keras.losses.binary_crossentropy(y_true, y_pred)
|
28 |
|
29 |
+
# === Load Model ===
|
30 |
model_path = "final_model_after_third_iteration_WDL0.07_0.5155/"
|
31 |
@st.cache_resource
|
32 |
def load_model():
|
|
|
41 |
|
42 |
model = load_model()
|
43 |
|
44 |
+
# === Inference Function ===
|
45 |
+
def run_prediction(image):
|
46 |
+
image = image.convert("RGB").resize((512, 512))
|
47 |
+
x = np.expand_dims(np.array(image), axis=0)
|
48 |
+
y = model.predict(x)[0, :, :, 0]
|
49 |
+
y_norm = (y - y.min()) / (y.max() - y.min() + 1e-6)
|
50 |
+
mask = (y_norm * 255).astype(np.uint8)
|
51 |
+
return Image.fromarray(mask)
|
52 |
+
|
53 |
# === Streamlit UI ===
|
54 |
st.title("🕳️ Sinkhole Segmentation with EffV2-UNet")
|
55 |
|
56 |
+
example_dir = "examples"
|
57 |
+
example_files = sorted([f for f in os.listdir(example_dir) if f.lower().endswith((".jpg", ".png"))])
|
|
|
|
|
58 |
|
59 |
+
# Display examples in columns
|
60 |
+
cols = st.columns(len(example_files))
|
|
|
|
|
61 |
|
62 |
+
for i, filename in enumerate(example_files):
|
63 |
+
with cols[i]:
|
64 |
+
img_path = os.path.join(example_dir, filename)
|
65 |
+
example_img = Image.open(img_path)
|
66 |
+
st.image(example_img, caption=filename, use_column_width=True)
|
67 |
|
68 |
+
if st.button(f"Run on {filename}"):
|
69 |
+
st.subheader("Original Image")
|
70 |
+
st.image(example_img, use_column_width=True)
|
71 |
+
|
72 |
+
st.subheader("Predicted Mask")
|
73 |
+
result = run_prediction(example_img)
|
74 |
+
st.image(result, use_column_width=True)
|
75 |
|
|