SinkSAM-Net / app.py
osherr's picture
Update app.py
7fe897d verified
raw
history blame
3.14 kB
import streamlit as st
import tensorflow as tf
import numpy as np
from PIL import Image
import os
# Fix font/matplotlib warnings for Hugging Face
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
os.environ["XDG_CACHE_HOME"] = "/tmp"
# Custom loss and metrics
def weighted_dice_loss(y_true, y_pred):
smooth = 1e-6
y_true_f = tf.reshape(y_true, [-1])
y_pred_f = tf.reshape(y_pred, [-1])
intersection = tf.reduce_sum(y_true_f * y_pred_f)
return 1 - ((2. * intersection + smooth) /
(tf.reduce_sum(y_true_f) + tf.reduce_sum(y_pred_f) + smooth))
def iou_metric(y_true, y_pred):
y_true = tf.cast(y_true > 0.5, tf.float32)
y_pred = tf.cast(y_pred > 0.5, tf.float32)
intersection = tf.reduce_sum(y_true * y_pred)
union = tf.reduce_sum(y_true) + tf.reduce_sum(y_pred) - intersection
return intersection / (union + 1e-6)
def bce_loss(y_true, y_pred):
return tf.keras.losses.binary_crossentropy(y_true, y_pred)
# Load model
@st.cache_resource
def load_model():
return tf.keras.models.load_model(
"final_model_after_third_iteration_WDL0.07_0.5155/",
custom_objects={
"weighted_dice_loss": weighted_dice_loss,
"iou_metric": iou_metric,
"bce_loss": bce_loss
}
)
model = load_model()
# App title
st.title("πŸ•³οΈ Sinkhole Segmentation with EffV2-UNet")
# Sidebar: Upload or select image
st.sidebar.header("πŸ“ Image Input")
uploaded_file = st.sidebar.file_uploader("Upload your image", type=["jpg", "jpeg", "png", "tif", "tiff"])
example_dir = "examples"
example_files = sorted([
f for f in os.listdir(example_dir)
if f.lower().endswith((".jpg", ".jpeg", ".png", ".tif", ".tiff"))
])
if "selected_example" not in st.session_state:
st.session_state.selected_example = None
if example_files:
st.sidebar.markdown("Or select from examples:")
for file in example_files:
path = os.path.join(example_dir, file)
image = Image.open(path)
st.sidebar.image(image, caption=file, width=120)
if st.sidebar.button(f"Use {file}"):
st.session_state.selected_example = path
uploaded_file = None # clear uploaded file
# Load image for display and processing
input_image = None
if uploaded_file is not None:
input_image = Image.open(uploaded_file).convert("RGB")
elif st.session_state.selected_example is not None:
input_image = Image.open(st.session_state.selected_example).convert("RGB")
if input_image:
st.image(input_image, caption="Input Image", use_column_width=True)
threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5, step=0.01)
if st.button("πŸ” Run Segmentation"):
resized = input_image.resize((512, 512))
x = np.expand_dims(np.array(resized), axis=0)
y = model.predict(x)[0, :, :, 0]
st.text(f"Prediction min/max: {y.min():.5f} / {y.max():.5f}")
# Threshold and visualize
mask = (y > threshold).astype(np.uint8) * 255
mask_image = Image.fromarray(mask)
st.image(mask_image, caption=f"Segmentation (Threshold = {threshold:.2f})", use_column_width=True)