File size: 3,143 Bytes
73b3af8
 
 
 
 
 
7fe897d
73b3af8
 
 
7fe897d
73b3af8
 
 
 
 
e9f8684
 
73b3af8
 
 
 
 
 
 
 
 
 
 
7fe897d
73b3af8
 
 
7fe897d
73b3af8
 
 
 
 
 
 
 
 
7fe897d
73b3af8
 
7fe897d
 
 
e9f8684
cb364c2
e9f8684
 
 
 
73b3af8
7fe897d
 
862a0c0
e9f8684
7fe897d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
862a0c0
 
e9f8684
862a0c0
e9f8684
7fe897d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import streamlit as st
import tensorflow as tf
import numpy as np
from PIL import Image
import os

# Fix font/matplotlib warnings for Hugging Face
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
os.environ["XDG_CACHE_HOME"] = "/tmp"

# Custom loss and metrics
def weighted_dice_loss(y_true, y_pred):
    smooth = 1e-6
    y_true_f = tf.reshape(y_true, [-1])
    y_pred_f = tf.reshape(y_pred, [-1])
    intersection = tf.reduce_sum(y_true_f * y_pred_f)
    return 1 - ((2. * intersection + smooth) /
                (tf.reduce_sum(y_true_f) + tf.reduce_sum(y_pred_f) + smooth))

def iou_metric(y_true, y_pred):
    y_true = tf.cast(y_true > 0.5, tf.float32)
    y_pred = tf.cast(y_pred > 0.5, tf.float32)
    intersection = tf.reduce_sum(y_true * y_pred)
    union = tf.reduce_sum(y_true) + tf.reduce_sum(y_pred) - intersection
    return intersection / (union + 1e-6)

def bce_loss(y_true, y_pred):
    return tf.keras.losses.binary_crossentropy(y_true, y_pred)

# Load model
@st.cache_resource
def load_model():
    return tf.keras.models.load_model(
        "final_model_after_third_iteration_WDL0.07_0.5155/",
        custom_objects={
            "weighted_dice_loss": weighted_dice_loss,
            "iou_metric": iou_metric,
            "bce_loss": bce_loss
        }
    )

model = load_model()

# App title
st.title("πŸ•³οΈ Sinkhole Segmentation with EffV2-UNet")

# Sidebar: Upload or select image
st.sidebar.header("πŸ“ Image Input")
uploaded_file = st.sidebar.file_uploader("Upload your image", type=["jpg", "jpeg", "png", "tif", "tiff"])

example_dir = "examples"
example_files = sorted([
    f for f in os.listdir(example_dir)
    if f.lower().endswith((".jpg", ".jpeg", ".png", ".tif", ".tiff"))
])

if "selected_example" not in st.session_state:
    st.session_state.selected_example = None

if example_files:
    st.sidebar.markdown("Or select from examples:")
    for file in example_files:
        path = os.path.join(example_dir, file)
        image = Image.open(path)
        st.sidebar.image(image, caption=file, width=120)
        if st.sidebar.button(f"Use {file}"):
            st.session_state.selected_example = path
            uploaded_file = None  # clear uploaded file

# Load image for display and processing
input_image = None
if uploaded_file is not None:
    input_image = Image.open(uploaded_file).convert("RGB")
elif st.session_state.selected_example is not None:
    input_image = Image.open(st.session_state.selected_example).convert("RGB")

if input_image:
    st.image(input_image, caption="Input Image", use_column_width=True)

    threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5, step=0.01)

    if st.button("πŸ” Run Segmentation"):
        resized = input_image.resize((512, 512))
        x = np.expand_dims(np.array(resized), axis=0)
        y = model.predict(x)[0, :, :, 0]

        st.text(f"Prediction min/max: {y.min():.5f} / {y.max():.5f}")

        # Threshold and visualize
        mask = (y > threshold).astype(np.uint8) * 255
        mask_image = Image.fromarray(mask)
        st.image(mask_image, caption=f"Segmentation (Threshold = {threshold:.2f})", use_column_width=True)