Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import streamlit as st | |
import uuid | |
import os | |
import re | |
import sys | |
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/semantic_search") | |
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/RAG") | |
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/utilities") | |
import boto3 | |
import requests | |
from boto3 import Session | |
import botocore.session | |
import json | |
import random | |
import string | |
import rag_DocumentLoader | |
import rag_DocumentSearcher | |
import pandas as pd | |
from PIL import Image | |
import shutil | |
import base64 | |
import time | |
import botocore | |
#from langchain.callbacks.base import BaseCallbackHandler | |
#import streamlit_nested_layout | |
#from IPython.display import clear_output, display, display_markdown, Markdown | |
from requests_aws4auth import AWS4Auth | |
#import copali | |
from requests.auth import HTTPBasicAuth | |
st.set_page_config( | |
#page_title="Semantic Search using OpenSearch", | |
layout="wide", | |
page_icon="images/opensearch_mark_default.png" | |
) | |
parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[0:-1]) | |
USER_ICON = "images/user.png" | |
AI_ICON = "images/opensearch-twitter-card.png" | |
REGENERATE_ICON = "images/regenerate.png" | |
s3_bucket_ = "pdf-repo-uploads" | |
#"pdf-repo-uploads" | |
polly_client = boto3.client('polly',aws_access_key_id=st.secrets['user_access_key'], | |
aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1') | |
# Check if the user ID is already stored in the session state | |
if 'user_id' in st.session_state: | |
user_id = st.session_state['user_id'] | |
#print(f"User ID: {user_id}") | |
# If the user ID is not yet stored in the session state, generate a random UUID | |
else: | |
user_id = str(uuid.uuid4()) | |
st.session_state['user_id'] = user_id | |
if 'session_id' not in st.session_state: | |
st.session_state['session_id'] = "" | |
if "chats" not in st.session_state: | |
st.session_state.chats = [ | |
{ | |
'id': 0, | |
'question': '', | |
'answer': '' | |
} | |
] | |
if "questions_" not in st.session_state: | |
st.session_state.questions_ = [] | |
if "answers_" not in st.session_state: | |
st.session_state.answers_ = [] | |
if "input_index" not in st.session_state: | |
st.session_state.input_index = "hpijan2024hometrack"#"globalwarmingnew"#"hpijan2024hometrack_no_img_no_table" | |
if "input_is_rerank" not in st.session_state: | |
st.session_state.input_is_rerank = True | |
if "input_copali_rerank" not in st.session_state: | |
st.session_state.input_copali_rerank = False | |
if "input_table_with_sql" not in st.session_state: | |
st.session_state.input_table_with_sql = False | |
if "input_query" not in st.session_state: | |
st.session_state.input_query="which city has the highest average housing price in UK ?"#"What is the projected energy percentage from renewable sources in future?"#"Which city in United Kingdom has the highest average housing price ?"#"How many aged above 85 years died due to covid ?"# What is the projected energy from renewable sources ?" | |
# if "input_rag_searchType" not in st.session_state: | |
# st.session_state.input_rag_searchType = ["Sparse Search"] | |
region = 'us-east-1' | |
bedrock_runtime_client = boto3.client('bedrock-runtime',region_name=region) | |
output = [] | |
service = 'es' | |
st.markdown(""" | |
<style> | |
[data-testid=column]:nth-of-type(2) [data-testid=stVerticalBlock]{ | |
gap: 0rem; | |
} | |
[data-testid=column]:nth-of-type(1) [data-testid=stVerticalBlock]{ | |
gap: 0rem; | |
} | |
</style> | |
""",unsafe_allow_html=True) | |
################ OpenSearch Py client ##################### | |
# credentials = boto3.Session().get_credentials() | |
# awsauth = AWSV4SignerAuth(credentials, region, service) | |
# ospy_client = OpenSearch( | |
# hosts = [{'host': 'search-opensearchservi-75ucark0bqob-bzk6r6h2t33dlnpgx2pdeg22gi.us-east-1.es.amazonaws.com', 'port': 443}], | |
# http_auth = awsauth, | |
# use_ssl = True, | |
# verify_certs = True, | |
# connection_class = RequestsHttpConnection, | |
# pool_maxsize = 20 | |
# ) | |
################# using boto3 credentials ################### | |
credentials = boto3.Session().get_credentials() | |
awsauth = HTTPBasicAuth('prasadnu',st.secrets['rag_shopping_assistant_os_api_access']) | |
service = 'es' | |
################# using boto3 credentials #################### | |
# if "input_searchType" not in st.session_state: | |
# st.session_state.input_searchType = "Conversational Search (RAG)" | |
# if "input_temperature" not in st.session_state: | |
# st.session_state.input_temperature = "0.001" | |
# if "input_topK" not in st.session_state: | |
# st.session_state.input_topK = 200 | |
# if "input_topP" not in st.session_state: | |
# st.session_state.input_topP = 0.95 | |
# if "input_maxTokens" not in st.session_state: | |
# st.session_state.input_maxTokens = 1024 | |
def write_logo(): | |
col1, col2, col3 = st.columns([5, 1, 5]) | |
with col2: | |
st.image(AI_ICON, use_container_width='always') | |
def write_top_bar(): | |
col1, col2 = st.columns([77,23]) | |
with col1: | |
st.write("") | |
st.header("Chat with your data",divider='rainbow') | |
#st.image(AI_ICON, use_container_width='always') | |
with col2: | |
st.write("") | |
st.write("") | |
clear = st.button("Clear") | |
st.write("") | |
st.write("") | |
return clear | |
clear = write_top_bar() | |
if clear: | |
st.session_state.questions_ = [] | |
st.session_state.answers_ = [] | |
st.session_state.input_query="" | |
# st.session_state.input_searchType="Conversational Search (RAG)" | |
# st.session_state.input_temperature = "0.001" | |
# st.session_state.input_topK = 200 | |
# st.session_state.input_topP = 0.95 | |
# st.session_state.input_maxTokens = 1024 | |
def handle_input(): | |
print("Question: "+st.session_state.input_query) | |
print("-----------") | |
print("\n\n") | |
if(st.session_state.input_query==''): | |
return "" | |
inputs = {} | |
for key in st.session_state: | |
if key.startswith('input_'): | |
inputs[key.removeprefix('input_')] = st.session_state[key] | |
st.session_state.inputs_ = inputs | |
####### | |
#st.write(inputs) | |
question_with_id = { | |
'question': inputs["query"], | |
'id': len(st.session_state.questions_) | |
} | |
st.session_state.questions_.append(question_with_id) | |
out_ = rag_DocumentSearcher.query_(awsauth, inputs, st.session_state['session_id'],st.session_state.input_rag_searchType) | |
st.session_state.answers_.append({ | |
'answer': out_['text'], | |
'source':out_['source'], | |
'id': len(st.session_state.questions_), | |
'image': out_['image'], | |
'table':out_['table'] | |
}) | |
st.session_state.input_query="" | |
# search_type = st.selectbox('Select the Search type', | |
# ('Conversational Search (RAG)', | |
# 'OpenSearch vector search', | |
# 'LLM Text Generation' | |
# ), | |
# key = 'input_searchType', | |
# help = "Select the type of retriever\n1. Conversational Search (Recommended) - This will include both the OpenSearch and LLM in the retrieval pipeline \n (note: This will put opensearch response as context to LLM to answer) \n2. OpenSearch vector search - This will put only OpenSearch's vector search in the pipeline, \n(Warning: this will lead to unformatted results )\n3. LLM Text Generation - This will include only LLM in the pipeline, \n(Warning: This will give hallucinated and out of context answers_)" | |
# ) | |
# col1, col2, col3, col4 = st.columns(4) | |
# with col1: | |
# st.text_input('Temperature', value = "0.001", placeholder='LLM Temperature', key = 'input_temperature',help = "Set the temperature of the Large Language model. \n Note: 1. Set this to values lower to 1 in the order of 0.001, 0.0001, such low values reduces hallucination and creativity in the LLM response; 2. This applies only when LLM is a part of the retriever pipeline") | |
# with col2: | |
# st.number_input('Top K', value = 200, placeholder='Top K', key = 'input_topK', step = 50, help = "This limits the LLM's predictions to the top k most probable tokens at each step of generation, this applies only when LLM is a prt of the retriever pipeline") | |
# with col3: | |
# st.number_input('Top P', value = 0.95, placeholder='Top P', key = 'input_topP', step = 0.05, help = "This sets a threshold probability and selects the top tokens whose cumulative probability exceeds the threshold while the tokens are generated by the LLM") | |
# with col4: | |
# st.number_input('Max Output Tokens', value = 500, placeholder='Max Output Tokens', key = 'input_maxTokens', step = 100, help = "This decides the total number of tokens generated as the final response. Note: Values greater than 1000 takes longer response time") | |
# st.markdown('---') | |
def write_user_message(md): | |
col1, col2 = st.columns([3,97]) | |
with col1: | |
st.image(USER_ICON, use_container_width='always') | |
with col2: | |
#st.warning(md['question']) | |
st.markdown("<div style='color:#e28743';font-size:18px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;font-style: italic;'>"+md['question']+"</div>", unsafe_allow_html = True) | |
def render_answer(question,answer,index,res_img): | |
col1, col2, col_3 = st.columns([4,74,22]) | |
with col1: | |
st.image(AI_ICON, use_container_width='always') | |
with col2: | |
ans_ = answer['answer'] | |
st.write(ans_) | |
# def stream_(): | |
# #use for streaming response on the client side | |
# for word in ans_.split(" "): | |
# yield word + " " | |
# time.sleep(0.04) | |
# #use for streaming response from Llm directly | |
# if(isinstance(ans_,botocore.eventstream.EventStream)): | |
# for event in ans_: | |
# chunk = event.get('chunk') | |
# if chunk: | |
# chunk_obj = json.loads(chunk.get('bytes').decode()) | |
# if('content_block' in chunk_obj or ('delta' in chunk_obj and 'text' in chunk_obj['delta'])): | |
# key_ = list(chunk_obj.keys())[2] | |
# text = chunk_obj[key_]['text'] | |
# clear_output(wait=True) | |
# output.append(text) | |
# yield text | |
# time.sleep(0.04) | |
# if(index == len(st.session_state.questions_)): | |
# st.write_stream(stream_) | |
# if(isinstance(st.session_state.answers_[index-1]['answer'],botocore.eventstream.EventStream)): | |
# st.session_state.answers_[index-1]['answer'] = "".join(output) | |
# else: | |
# st.write(ans_) | |
polly_response = polly_client.synthesize_speech(VoiceId='Joanna', | |
OutputFormat='ogg_vorbis', | |
Text = ans_, | |
Engine = 'neural') | |
audio_col1, audio_col2 = st.columns([50,50]) | |
with audio_col1: | |
st.audio(polly_response['AudioStream'].read(), format="audio/ogg") | |
#st.markdown("<div style='font-size:18px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;border-radius: 10px;'>"+ans_+"</div>", unsafe_allow_html = True) | |
#st.markdown("<div style='color:#e28743';padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'><b>Relevant images from the document :</b></div>", unsafe_allow_html = True) | |
#st.write("") | |
colu1,colu2,colu3 = st.columns([4,82,20]) | |
with colu2: | |
#with st.expander("Relevant Sources:"): | |
with st.container(): | |
if(len(res_img)>0): | |
with st.expander("Relevant Sources:"): | |
#with st.expander("Images:"): | |
st.write("Images:") | |
col3,col4,col5 = st.columns([33,33,33]) | |
cols = [col3,col4] | |
idx = 0 | |
#print(res_img) | |
for img_ in res_img: | |
if(img_['file'].lower()!='none' and idx < 2): | |
img = img_['file'].split(".")[0] | |
caption = img_['caption'] | |
with cols[idx]: | |
st.image(parent_dirname+"/figures/"+st.session_state.input_index+"/"+img+".jpg") | |
#st.write(caption) | |
idx = idx+1 | |
#st.markdown("<div style='color:#e28743';padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'><b>Sources from the document:</b></div>", unsafe_allow_html = True) | |
if(len(answer["table"] )>0): | |
#with st.expander("Table:"): | |
st.write("Table:") | |
df = pd.read_csv(answer["table"][0]['name'],skipinitialspace = True, on_bad_lines='skip',delimiter='`') | |
df.fillna(method='pad', inplace=True) | |
st.table(df) | |
#with st.expander("Raw sources:"): | |
st.write("Raw sources:") | |
st.write(answer["source"]) | |
with col_3: | |
#st.markdown("<div style='color:#e28743;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 5px;'><b>"+",".join(st.session_state.input_rag_searchType)+"</b></div>", unsafe_allow_html = True) | |
if(index == len(st.session_state.questions_)): | |
rdn_key = ''.join([random.choice(string.ascii_letters) | |
for _ in range(10)]) | |
currentValue = ''.join(st.session_state.input_rag_searchType)+str(st.session_state.input_is_rerank)+str(st.session_state.input_table_with_sql)+st.session_state.input_index | |
oldValue = ''.join(st.session_state.inputs_["rag_searchType"])+str(st.session_state.inputs_["is_rerank"])+str(st.session_state.inputs_["table_with_sql"])+str(st.session_state.inputs_["index"]) | |
#print("changing values-----------------") | |
def on_button_click(): | |
# print("button clicked---------------") | |
# print(currentValue) | |
# print(oldValue) | |
if(currentValue!=oldValue or 1==1): | |
#print("----------regenerate----------------") | |
st.session_state.input_query = st.session_state.questions_[-1]["question"] | |
st.session_state.answers_.pop() | |
st.session_state.questions_.pop() | |
handle_input() | |
with placeholder.container(): | |
render_all() | |
if("currentValue" in st.session_state): | |
del st.session_state["currentValue"] | |
try: | |
del regenerate | |
except: | |
pass | |
#print("------------------------") | |
#print(st.session_state) | |
placeholder__ = st.empty() | |
placeholder__.button("🔄",key=rdn_key,on_click=on_button_click) | |
#Each answer will have context of the question asked in order to associate the provided feedback with the respective question | |
def write_chat_message(md, q,index): | |
res_img = md['image'] | |
#st.session_state['session_id'] = res['session_id'] to be added in memory | |
chat = st.container() | |
with chat: | |
#print("st.session_state.input_index------------------") | |
#print(st.session_state.input_index) | |
render_answer(q,md,index,res_img) | |
def render_all(): | |
index = 0 | |
for (q, a) in zip(st.session_state.questions_, st.session_state.answers_): | |
index = index +1 | |
write_user_message(q) | |
write_chat_message(a, q,index) | |
placeholder = st.empty() | |
with placeholder.container(): | |
render_all() | |
st.markdown("") | |
col_2, col_3 = st.columns([75,20]) | |
#col_1, col_2, col_3 = st.columns([7.5,71.5,22]) | |
# with col_1: | |
# st.markdown("<p style='padding:0px 0px 0px 0px; color:#FF9900;font-size:120%'><b>Ask:</b></p>",unsafe_allow_html=True, help = 'Enter the questions and click on "GO"') | |
with col_2: | |
#st.markdown("") | |
input = st.text_input( "Ask here",label_visibility = "collapsed",key="input_query") | |
with col_3: | |
#hidden = st.button("RUN",disabled=True,key = "hidden") | |
play = st.button("GO",on_click=handle_input,key = "play") | |
with st.sidebar: | |
st.page_link("app.py", label=":orange[Home]", icon="🏠") | |
st.subheader(":blue[Sample Data]") | |
coln_1,coln_2 = st.columns([70,30]) | |
# index_select = st.radio("Choose one index",["UK Housing","Covid19 impacts on Ireland","Environmental Global Warming","BEIR Research"], | |
# captions = ['[preview](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/HPI-Jan-2024-Hometrack.pdf)', | |
# '[preview](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/covid19_ie.pdf)', | |
# '[preview](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/global_warming.pdf)', | |
# '[preview](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/BEIR.pdf)'], | |
# key="input_rad_index") | |
with coln_1: | |
index_select = st.radio("Choose one index",["UK Housing","Global Warming stats","Covid19 impacts on Ireland"],key="input_rad_index") | |
with coln_2: | |
st.markdown("<p style='font-size:15px'>Preview file</p>",unsafe_allow_html=True) | |
st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/HPI-Jan-2024-Hometrack.pdf)") | |
st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/global_warming.pdf)") | |
st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/covid19_ie.pdf)") | |
#st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/BEIR.pdf)") | |
st.markdown(""" | |
<style> | |
[data-testid=column]:nth-of-type(2) [data-testid=stVerticalBlock]{ | |
gap: 0rem; | |
} | |
[data-testid=column]:nth-of-type(1) [data-testid=stVerticalBlock]{ | |
gap: 0rem; | |
} | |
</style> | |
""",unsafe_allow_html=True) | |
# Initialize boto3 to use the S3 client. | |
s3_client = boto3.resource('s3',aws_access_key_id=st.secrets['user_access_key'], | |
aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1') | |
bucket=s3_client.Bucket(s3_bucket_) | |
objects = bucket.objects.filter(Prefix="sample_pdfs/") | |
urls = [] | |
client = boto3.client('s3',aws_access_key_id=st.secrets['user_access_key'], | |
aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1') | |
for obj in objects: | |
if obj.key.endswith('.pdf'): | |
# Generate the S3 presigned URL | |
s3_presigned_url = client.generate_presigned_url( | |
ClientMethod='get_object', | |
Params={ | |
'Bucket': s3_bucket_, | |
'Key': obj.key | |
}, | |
ExpiresIn=3600 | |
) | |
# Print the created S3 presigned URL | |
print(s3_presigned_url) | |
urls.append(s3_presigned_url) | |
#st.write("["+obj.key.split('/')[1]+"]("+s3_presigned_url+")") | |
st.link_button(obj.key.split('/')[1], s3_presigned_url) | |
# st.subheader(":blue[Your multi-modal documents]") | |
# pdf_doc_ = st.file_uploader( | |
# "Upload your PDFs here and click on 'Process'", accept_multiple_files=False) | |
# pdf_docs = [pdf_doc_] | |
# if st.button("Process"): | |
# with st.spinner("Processing"): | |
# if os.path.isdir(parent_dirname+"/pdfs") == False: | |
# os.mkdir(parent_dirname+"/pdfs") | |
# for pdf_doc in pdf_docs: | |
# print(type(pdf_doc)) | |
# pdf_doc_name = (pdf_doc.name).replace(" ","_") | |
# with open(os.path.join(parent_dirname+"/pdfs",pdf_doc_name),"wb") as f: | |
# f.write(pdf_doc.getbuffer()) | |
# request_ = { "bucket": s3_bucket_,"key": pdf_doc_name} | |
# # if(st.session_state.input_copali_rerank): | |
# # copali.process_doc(request_) | |
# # else: | |
# rag_DocumentLoader.load_docs(request_) | |
# print('lambda done') | |
# st.success('you can start searching on your PDF') | |
# if(pdf_doc_ is None or pdf_doc_ == ""): | |
# if(index_select == "Global Warming stats"): | |
# st.session_state.input_index = "globalwarmingnew" | |
# if(index_select == "Covid19 impacts on Ireland"): | |
# st.session_state.input_index = "covid19ie"#"choosetheknnalgorithmforyourbillionscaleusecasewithopensearchawsbigdatablog" | |
# if(index_select == "BEIR"): | |
# st.session_state.input_index = "2104" | |
# if(index_select == "UK Housing"): | |
# st.session_state.input_index = "ukhousingstats" | |
# custom_index = st.text_input("If uploaded the file already, enter the original file name", value = "") | |
# if(custom_index!=""): | |
# st.session_state.input_index = re.sub('[^A-Za-z0-9]+', '', (custom_index.lower().replace(".pdf","").split("/")[-1].split(".")[0]).lower()) | |
st.subheader(":blue[Retriever]") | |
search_type = st.multiselect('Select the Retriever(s)', | |
['Keyword Search', | |
'Vector Search', | |
'Sparse Search', | |
], | |
['Sparse Search'], | |
key = 'input_rag_searchType', | |
help = "Select the type of Search, adding more than one search type will activate hybrid search"#\n1. Conversational Search (Recommended) - This will include both the OpenSearch and LLM in the retrieval pipeline \n (note: This will put opensearch response as context to LLM to answer) \n2. OpenSearch vector search - This will put only OpenSearch's vector search in the pipeline, \n(Warning: this will lead to unformatted results )\n3. LLM Text Generation - This will include only LLM in the pipeline, \n(Warning: This will give hallucinated and out of context answers)" | |
) | |
re_rank = st.checkbox('Re-rank results', key = 'input_re_rank', disabled = False, value = True, help = "Checking this box will re-rank the results using a cross-encoder model") | |
if(re_rank): | |
st.session_state.input_is_rerank = True | |
else: | |
st.session_state.input_is_rerank = False | |
# copali_rerank = st.checkbox("Search and Re-rank with Token level vectors",key = 'copali_rerank',help = "Enabling this option uses 'Copali' model's page level image embeddings to retrieve documents and MaxSim to re-rank the pages.\n\n Hugging Face Model: https://huggingface.co/vidore/colpali") | |
# if(copali_rerank): | |
# st.session_state.input_copali_rerank = True | |
# else: | |
# st.session_state.input_copali_rerank = False | |