import streamlit as st import uuid import os import re import sys sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/semantic_search") sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/RAG") sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/utilities") import boto3 import requests from boto3 import Session import botocore.session import json import random import string import rag_DocumentLoader import rag_DocumentSearcher import pandas as pd from PIL import Image import shutil import base64 import time import botocore #from langchain.callbacks.base import BaseCallbackHandler #import streamlit_nested_layout #from IPython.display import clear_output, display, display_markdown, Markdown from requests_aws4auth import AWS4Auth #import copali from requests.auth import HTTPBasicAuth st.set_page_config( #page_title="Semantic Search using OpenSearch", layout="wide", page_icon="images/opensearch_mark_default.png" ) parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[0:-1]) USER_ICON = "images/user.png" AI_ICON = "images/opensearch-twitter-card.png" REGENERATE_ICON = "images/regenerate.png" s3_bucket_ = "pdf-repo-uploads" #"pdf-repo-uploads" polly_client = boto3.client('polly',aws_access_key_id=st.secrets['user_access_key'], aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1') # Check if the user ID is already stored in the session state if 'user_id' in st.session_state: user_id = st.session_state['user_id'] #print(f"User ID: {user_id}") # If the user ID is not yet stored in the session state, generate a random UUID else: user_id = str(uuid.uuid4()) st.session_state['user_id'] = user_id if 'session_id' not in st.session_state: st.session_state['session_id'] = "" if "chats" not in st.session_state: st.session_state.chats = [ { 'id': 0, 'question': '', 'answer': '' } ] if "questions_" not in st.session_state: st.session_state.questions_ = [] if "answers_" not in st.session_state: st.session_state.answers_ = [] if "input_index" not in st.session_state: st.session_state.input_index = "hpijan2024hometrack"#"globalwarmingnew"#"hpijan2024hometrack_no_img_no_table" if "input_is_rerank" not in st.session_state: st.session_state.input_is_rerank = True if "input_copali_rerank" not in st.session_state: st.session_state.input_copali_rerank = False if "input_table_with_sql" not in st.session_state: st.session_state.input_table_with_sql = False if "input_query" not in st.session_state: st.session_state.input_query="which city has the highest average housing price in UK ?"#"What is the projected energy percentage from renewable sources in future?"#"Which city in United Kingdom has the highest average housing price ?"#"How many aged above 85 years died due to covid ?"# What is the projected energy from renewable sources ?" # if "input_rag_searchType" not in st.session_state: # st.session_state.input_rag_searchType = ["Sparse Search"] region = 'us-east-1' bedrock_runtime_client = boto3.client('bedrock-runtime',region_name=region) output = [] service = 'es' st.markdown(""" """,unsafe_allow_html=True) ################ OpenSearch Py client ##################### # credentials = boto3.Session().get_credentials() # awsauth = AWSV4SignerAuth(credentials, region, service) # ospy_client = OpenSearch( # hosts = [{'host': 'search-opensearchservi-75ucark0bqob-bzk6r6h2t33dlnpgx2pdeg22gi.us-east-1.es.amazonaws.com', 'port': 443}], # http_auth = awsauth, # use_ssl = True, # verify_certs = True, # connection_class = RequestsHttpConnection, # pool_maxsize = 20 # ) ################# using boto3 credentials ################### credentials = boto3.Session().get_credentials() awsauth = HTTPBasicAuth('prasadnu',st.secrets['rag_shopping_assistant_os_api_access']) service = 'es' ################# using boto3 credentials #################### # if "input_searchType" not in st.session_state: # st.session_state.input_searchType = "Conversational Search (RAG)" # if "input_temperature" not in st.session_state: # st.session_state.input_temperature = "0.001" # if "input_topK" not in st.session_state: # st.session_state.input_topK = 200 # if "input_topP" not in st.session_state: # st.session_state.input_topP = 0.95 # if "input_maxTokens" not in st.session_state: # st.session_state.input_maxTokens = 1024 def write_logo(): col1, col2, col3 = st.columns([5, 1, 5]) with col2: st.image(AI_ICON, use_container_width='always') def write_top_bar(): col1, col2 = st.columns([77,23]) with col1: st.write("") st.header("Chat with your data",divider='rainbow') #st.image(AI_ICON, use_container_width='always') with col2: st.write("") st.write("") clear = st.button("Clear") st.write("") st.write("") return clear clear = write_top_bar() if clear: st.session_state.questions_ = [] st.session_state.answers_ = [] st.session_state.input_query="" # st.session_state.input_searchType="Conversational Search (RAG)" # st.session_state.input_temperature = "0.001" # st.session_state.input_topK = 200 # st.session_state.input_topP = 0.95 # st.session_state.input_maxTokens = 1024 def handle_input(): print("Question: "+st.session_state.input_query) print("-----------") print("\n\n") if(st.session_state.input_query==''): return "" inputs = {} for key in st.session_state: if key.startswith('input_'): inputs[key.removeprefix('input_')] = st.session_state[key] st.session_state.inputs_ = inputs ####### #st.write(inputs) question_with_id = { 'question': inputs["query"], 'id': len(st.session_state.questions_) } st.session_state.questions_.append(question_with_id) out_ = rag_DocumentSearcher.query_(awsauth, inputs, st.session_state['session_id'],st.session_state.input_rag_searchType) st.session_state.answers_.append({ 'answer': out_['text'], 'source':out_['source'], 'id': len(st.session_state.questions_), 'image': out_['image'], 'table':out_['table'] }) st.session_state.input_query="" # search_type = st.selectbox('Select the Search type', # ('Conversational Search (RAG)', # 'OpenSearch vector search', # 'LLM Text Generation' # ), # key = 'input_searchType', # help = "Select the type of retriever\n1. Conversational Search (Recommended) - This will include both the OpenSearch and LLM in the retrieval pipeline \n (note: This will put opensearch response as context to LLM to answer) \n2. OpenSearch vector search - This will put only OpenSearch's vector search in the pipeline, \n(Warning: this will lead to unformatted results )\n3. LLM Text Generation - This will include only LLM in the pipeline, \n(Warning: This will give hallucinated and out of context answers_)" # ) # col1, col2, col3, col4 = st.columns(4) # with col1: # st.text_input('Temperature', value = "0.001", placeholder='LLM Temperature', key = 'input_temperature',help = "Set the temperature of the Large Language model. \n Note: 1. Set this to values lower to 1 in the order of 0.001, 0.0001, such low values reduces hallucination and creativity in the LLM response; 2. This applies only when LLM is a part of the retriever pipeline") # with col2: # st.number_input('Top K', value = 200, placeholder='Top K', key = 'input_topK', step = 50, help = "This limits the LLM's predictions to the top k most probable tokens at each step of generation, this applies only when LLM is a prt of the retriever pipeline") # with col3: # st.number_input('Top P', value = 0.95, placeholder='Top P', key = 'input_topP', step = 0.05, help = "This sets a threshold probability and selects the top tokens whose cumulative probability exceeds the threshold while the tokens are generated by the LLM") # with col4: # st.number_input('Max Output Tokens', value = 500, placeholder='Max Output Tokens', key = 'input_maxTokens', step = 100, help = "This decides the total number of tokens generated as the final response. Note: Values greater than 1000 takes longer response time") # st.markdown('---') def write_user_message(md): col1, col2 = st.columns([3,97]) with col1: st.image(USER_ICON, use_container_width='always') with col2: #st.warning(md['question']) st.markdown("
Ask:
",unsafe_allow_html=True, help = 'Enter the questions and click on "GO"') with col_2: #st.markdown("") input = st.text_input( "Ask here",label_visibility = "collapsed",key="input_query") with col_3: #hidden = st.button("RUN",disabled=True,key = "hidden") play = st.button("GO",on_click=handle_input,key = "play") with st.sidebar: st.page_link("app.py", label=":orange[Home]", icon="🏠") st.subheader(":blue[Sample Data]") coln_1,coln_2 = st.columns([70,30]) # index_select = st.radio("Choose one index",["UK Housing","Covid19 impacts on Ireland","Environmental Global Warming","BEIR Research"], # captions = ['[preview](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/HPI-Jan-2024-Hometrack.pdf)', # '[preview](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/covid19_ie.pdf)', # '[preview](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/global_warming.pdf)', # '[preview](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/BEIR.pdf)'], # key="input_rad_index") with coln_1: index_select = st.radio("Choose one index",["UK Housing","Global Warming stats","Covid19 impacts on Ireland"],key="input_rad_index") with coln_2: st.markdown("Preview file
",unsafe_allow_html=True) st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/HPI-Jan-2024-Hometrack.pdf)") st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/global_warming.pdf)") st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/covid19_ie.pdf)") #st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/BEIR.pdf)") st.markdown(""" """,unsafe_allow_html=True) # Initialize boto3 to use the S3 client. s3_client = boto3.resource('s3',aws_access_key_id=st.secrets['user_access_key'], aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1') bucket=s3_client.Bucket(s3_bucket_) objects = bucket.objects.filter(Prefix="sample_pdfs/") urls = [] client = boto3.client('s3',aws_access_key_id=st.secrets['user_access_key'], aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1') for obj in objects: if obj.key.endswith('.pdf'): # Generate the S3 presigned URL s3_presigned_url = client.generate_presigned_url( ClientMethod='get_object', Params={ 'Bucket': s3_bucket_, 'Key': obj.key }, ExpiresIn=3600 ) # Print the created S3 presigned URL print(s3_presigned_url) urls.append(s3_presigned_url) #st.write("["+obj.key.split('/')[1]+"]("+s3_presigned_url+")") st.link_button(obj.key.split('/')[1], s3_presigned_url) # st.subheader(":blue[Your multi-modal documents]") # pdf_doc_ = st.file_uploader( # "Upload your PDFs here and click on 'Process'", accept_multiple_files=False) # pdf_docs = [pdf_doc_] # if st.button("Process"): # with st.spinner("Processing"): # if os.path.isdir(parent_dirname+"/pdfs") == False: # os.mkdir(parent_dirname+"/pdfs") # for pdf_doc in pdf_docs: # print(type(pdf_doc)) # pdf_doc_name = (pdf_doc.name).replace(" ","_") # with open(os.path.join(parent_dirname+"/pdfs",pdf_doc_name),"wb") as f: # f.write(pdf_doc.getbuffer()) # request_ = { "bucket": s3_bucket_,"key": pdf_doc_name} # # if(st.session_state.input_copali_rerank): # # copali.process_doc(request_) # # else: # rag_DocumentLoader.load_docs(request_) # print('lambda done') # st.success('you can start searching on your PDF') # if(pdf_doc_ is None or pdf_doc_ == ""): # if(index_select == "Global Warming stats"): # st.session_state.input_index = "globalwarmingnew" # if(index_select == "Covid19 impacts on Ireland"): # st.session_state.input_index = "covid19ie"#"choosetheknnalgorithmforyourbillionscaleusecasewithopensearchawsbigdatablog" # if(index_select == "BEIR"): # st.session_state.input_index = "2104" # if(index_select == "UK Housing"): # st.session_state.input_index = "ukhousingstats" # custom_index = st.text_input("If uploaded the file already, enter the original file name", value = "") # if(custom_index!=""): # st.session_state.input_index = re.sub('[^A-Za-z0-9]+', '', (custom_index.lower().replace(".pdf","").split("/")[-1].split(".")[0]).lower()) st.subheader(":blue[Retriever]") search_type = st.multiselect('Select the Retriever(s)', ['Keyword Search', 'Vector Search', 'Sparse Search', ], ['Sparse Search'], key = 'input_rag_searchType', help = "Select the type of Search, adding more than one search type will activate hybrid search"#\n1. Conversational Search (Recommended) - This will include both the OpenSearch and LLM in the retrieval pipeline \n (note: This will put opensearch response as context to LLM to answer) \n2. OpenSearch vector search - This will put only OpenSearch's vector search in the pipeline, \n(Warning: this will lead to unformatted results )\n3. LLM Text Generation - This will include only LLM in the pipeline, \n(Warning: This will give hallucinated and out of context answers)" ) re_rank = st.checkbox('Re-rank results', key = 'input_re_rank', disabled = False, value = True, help = "Checking this box will re-rank the results using a cross-encoder model") if(re_rank): st.session_state.input_is_rerank = True else: st.session_state.input_is_rerank = False # copali_rerank = st.checkbox("Search and Re-rank with Token level vectors",key = 'copali_rerank',help = "Enabling this option uses 'Copali' model's page level image embeddings to retrieve documents and MaxSim to re-rank the pages.\n\n Hugging Face Model: https://huggingface.co/vidore/colpali") # if(copali_rerank): # st.session_state.input_copali_rerank = True # else: # st.session_state.input_copali_rerank = False