Spaces:
Starting
Starting
File size: 21,672 Bytes
488dc3e 1bbca12 4701375 488dc3e 4701375 488dc3e 4701375 1bbca12 4701375 488dc3e 4701375 488dc3e 1bbca12 4701375 1bbca12 488dc3e 4701375 1bbca12 4701375 488dc3e 4701375 1bbca12 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 4701375 488dc3e 1bbca12 4701375 1bbca12 488dc3e 4701375 488dc3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
import os
import json
import logging
import asyncio
import aiohttp
import nest_asyncio
import requests
import pandas as pd
from typing import Dict, Any, List
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.messages import SystemMessage, HumanMessage
from langgraph.graph import StateGraph, END
from sentence_transformers import SentenceTransformer
import gradio as gr
from dotenv import load_dotenv
from huggingface_hub import InferenceClient
from state import JARVISState
from tools import (
search_tool, multi_hop_search_tool, file_parser_tool, image_parser_tool,
calculator_tool, document_retriever_tool, duckduckgo_search_tool,
weather_info_tool, hub_stats_tool, guest_info_retriever_tool
)
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Apply nest_asyncio
nest_asyncio.apply()
# Load environment variables
load_dotenv()
SPACE_ID = os.getenv("SPACE_ID", "onisj/jarvis_gaia_agent")
GAIA_API_URL = "https://agents-course-unit4-scoring.hf.space"
GAIA_FILE_URL = f"{GAIA_API_URL}/files/"
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
# Verify environment variables
if not SPACE_ID:
raise ValueError("SPACE_ID not set")
if not HF_TOKEN:
raise ValueError("HUGGINGFACEHUB_API_TOKEN not set")
logger.info(f"SPACE_ID: {SPACE_ID}")
# Initialize models
try:
llm = InferenceClient(
model="meta-llama/Meta-Llama-3-8B-Instruct",
token=HF_TOKEN,
timeout=30
)
logger.info("Hugging Face Inference LLM initialized")
except Exception as e:
logger.error(f"Failed to initialize LLM: {e}")
llm = None
try:
embedder = SentenceTransformer("all-MiniLM-L6-v2")
logger.info("Sentence transformer initialized")
except Exception as e:
logger.error(f"Failed to initialize embedder: {e}")
embedder = None
# --- Helper Functions ---
async def test_gaia_api(task_id: str, file_type: str = "txt") -> tuple[bool, str | None]:
"""Test if a file exists for the task ID."""
try:
for ext in [file_type, "txt", "csv", "xlsx", "jpg", "pdf"]:
async with aiohttp.ClientSession() as session:
async with session.get(f"{GAIA_FILE_URL}{task_id}.{ext}", timeout=5) as resp:
logger.info(f"GAIA API test for task {task_id} with .{ext}: HTTP {resp.status}")
if resp.status == 200:
file_path = f"temp_{task_id}.{ext}"
with open(file_path, "wb") as f:
f.write(await resp.read())
return True, ext
logger.info(f"No file found for task {task_id}")
return False, None
except Exception as e:
logger.warning(f"GAIA API test failed: {str(e)}")
return False, None
# --- Node Functions ---
async def parse_question(state: Dict[str, Any]) -> Dict[str, Any]:
"""Parse the question to select appropriate tools."""
try:
question = state["question"]
task_id = state["task_id"]
tools_needed = ["search_tool"]
if llm:
prompt = ChatPromptTemplate.from_messages([
SystemMessage(content="""Select tools from: ['search_tool', 'multi_hop_search_tool', 'file_parser_tool', 'image_parser_tool', 'calculator_tool', 'document_retriever_tool', 'duckduckgo_search_tool', 'weather_info_tool', 'hub_stats_tool', 'guest_info_retriever_tool'].
Return JSON list, e.g., ["search_tool", "file_parser_tool"].
Rules:
- Always include "search_tool" unless purely computational.
- Use "multi_hop_search_tool" for complex queries (over 20 words).
- Use "file_parser_tool" for data, tables, or Excel.
- Use "image_parser_tool" for images/videos.
- Use "calculator_tool" for math calculations.
- Use "document_retriever_tool" for documents/PDFs.
- Use "duckduckgo_search_tool" for additional search capability.
- Use "weather_info_tool" for weather-related queries.
- Use "hub_stats_tool" for Hugging Face Hub queries.
- Use "guest_info_retriever_tool" for guest-related queries.
- Output ONLY valid JSON."""),
HumanMessage(content=f"Query: {question}")
])
try:
response = llm.chat_completion(
messages=[
{"role": "system", "content": prompt[0].content},
{"role": "user", "content": prompt[1].content}
],
max_tokens=512,
temperature=0.7
)
tools_needed = json.loads(response["choices"][0]["message"]["content"].strip())
valid_tools = {
"search_tool", "multi_hop_search_tool", "file_parser_tool", "image_parser_tool",
"calculator_tool", "document_retriever_tool", "duckduckgo_search_tool",
"weather_info_tool", "hub_stats_tool", "guest_info_retriever_tool"
}
tools_needed = [tool for tool in tools_needed if tool in valid_tools]
except Exception as e:
logger.warning(f"Task {task_id} failed: JSON parse error: {e}")
tools_needed = ["search_tool"]
# Keyword-based fallback
question_lower = question.lower()
if any(word in question_lower for word in ["image", "video"]):
tools_needed.append("image_parser_tool")
if any(word in question_lower for word in ["data", "table", "excel"]):
tools_needed.append("file_parser_tool")
if any(word in question_lower for word in ["calculate", "math"]):
tools_needed.append("calculator_tool")
if any(word in question_lower for word in ["document", "pdf"]):
tools_needed.append("document_retriever_tool")
if any(word in question_lower for word in ["weather"]):
tools_needed.append("weather_info_tool")
if any(word in question_lower for word in ["model", "huggingface"]):
tools_needed.append("hub_stats_tool")
if any(word in question_lower for word in ["guest", "name", "relation"]):
tools_needed.append("guest_info_retriever_tool")
if len(question.split()) > 20:
tools_needed.append("multi_hop_search_tool")
file_available, file_ext = await test_gaia_api(task_id)
if file_available:
if "file_parser_tool" not in tools_needed and any(word in question_lower for word in ["data", "table", "excel"]):
tools_needed.append("file_parser_tool")
if "image_parser_tool" not in tools_needed and "image" in question_lower:
tools_needed.append("image_parser_tool")
if "document_retriever_tool" not in tools_needed and file_ext == "pdf":
tools_needed.append("document_retriever_tool")
else:
tools_needed = [tool for tool in tools_needed if tool not in ["file_parser_tool", "image_parser_tool", "document_retriever_tool"]]
state["tools_needed"] = list(set(tools_needed)) # Remove duplicates
logger.info(f"Task {task_id}: Selected tools: {tools_needed}")
return state
except Exception as e:
logger.error(f"Error parsing task {task_id}: {e}")
state["tools_needed"] = ["search_tool"]
return state
async def tool_dispatcher(state: JARVISState) -> JARVISState:
"""Dispatch selected tools to process the state."""
try:
updated_state = state.copy()
file_type = "jpg" if "image" in state["question"].lower() else "txt"
if "menu" in state["question"].lower() or "report" in state["question"].lower():
file_type = "pdf"
elif "data" in state["question"].lower():
file_type = "xlsx"
can_download, file_ext = await test_gaia_api(updated_state["task_id"], file_type)
for tool in updated_state["tools_needed"]:
try:
if tool == "search_tool":
result = await search_tool.ainvoke({"query": updated_state["question"]})
updated_state["web_results"].extend([r["content"] for r in result])
elif tool == "multi_hop_search_tool":
result = await multi_hop_search_tool.ainvoke({"query": updated_state["question"], "steps": 3})
updated_state["web_results"].extend([r["content"] for r in result])
await asyncio.sleep(2) # Rate limit
elif tool == "file_parser_tool" and can_download:
result = await file_parser_tool.ainvoke({"task_id": updated_state["task_id"], "file_type": file_ext})
updated_state["file_results"] = str(result)
elif tool == "image_parser_tool" and can_download:
result = await image_parser_tool.ainvoke({
"file_path": f"temp_{updated_state['task_id']}.{file_ext}",
"task": "describe"
})
updated_state["image_results"] = str(result)
elif tool == "calculator_tool":
result = await calculator_tool.ainvoke({"expression": updated_state.get("question", "")})
updated_state["calculation_results"] = str(result)
elif tool == "document_retriever_tool" and can_download:
result = await document_retriever_tool.ainvoke({
"task_id": updated_state["task_id"],
"query": updated_state["question"],
"file_type": file_ext
})
updated_state["document_results"] = str(result)
elif tool == "duckduckgo_search_tool":
result = await duckduckgo_search_tool.run(updated_state["question"])
updated_state["web_results"].append(str(result))
elif tool == "weather_info_tool":
location = updated_state["question"].split("weather in ")[1].split()[0] if "weather in" in updated_state["question"].lower() else "Unknown"
result = await weather_info_tool.ainvoke({"location": location})
updated_state["web_results"].append(str(result))
elif tool == "hub_stats_tool":
author = updated_state["question"].split("by ")[1].split()[0] if "by" in updated_state["question"].lower() else "Unknown"
result = await hub_stats_tool.ainvoke({"author": author})
updated_state["web_results"].append(str(result))
elif tool == "guest_info_retriever_tool":
query = updated_state["question"].split("about ")[1] if "about" in updated_state["question"].lower() else updated_state["question"]
result = await guest_info_retriever_tool.ainvoke({"query": query})
updated_state["web_results"].append(str(result))
except Exception as e:
logger.warning(f"Error in tool {tool} for task {updated_state['task_id']}: {str(e)}")
updated_state[f"{tool}_results"] = f"Error: {str(e)}"
logger.info(f"Task {updated_state['task_id']}: Tool results: {updated_state}")
return updated_state
except Exception as e:
logger.error(f"Tool dispatch failed for task {state['task_id']}: {e}")
return state
async def reasoning(state: JARVISState) -> Dict[str, Any]:
"""Generate exact-match answer with specific formatting."""
try:
if not llm:
return {"answer": "LLM unavailable"}
prompt = ChatPromptTemplate.from_messages([
SystemMessage(content="""Provide ONLY the exact answer (e.g., '90', 'HUE'). For USD, use two decimal places (e.g., '1234.00'). For lists, use comma-separated values (e.g., 'Smith, Lee'). For IOC codes, use three-letter codes (e.g., 'ARG'). No explanations or conversational text."""),
HumanMessage(content="""Question: {question}
Web results: {web_results}
File results: {file_results}
Image results: {image_results}
Calculation results: {calculation_results}
Document results: {document_results}""")
])
response = llm.chat_completion(
messages=[
{"role": "system", "content": prompt[0].content},
{"role": "user", "content": prompt[1].content.format(
question=state["question"],
web_results="\n".join(state["web_results"]),
file_results=state["file_results"],
image_results=state["image_results"],
calculation_results=state["calculation_results"],
document_results=state["document_results"]
)}
],
max_tokens=512,
temperature=0.7
)
answer = response["choices"][0]["message"]["content"].strip()
# Clean answer for specific formats
if "USD" in state["question"].lower():
try:
answer = f"{float(answer):.2f}"
except ValueError:
pass
if "before and after" in state["question"].lower():
answer = answer.replace(" and ", ", ")
elif "IOC code" in state["question"].lower():
answer = answer.upper()[:3]
logger.info(f"Task {state['task_id']}: Answer: {answer}")
return {"answer": answer}
except Exception as e:
logger.error(f"Reasoning failed for task {state['task_id']}: {e}")
return {"answer": f"Error: {str(e)}"}
def router(state: JARVISState) -> str:
"""Route based on tools needed."""
if state["tools_needed"]:
return "tool_dispatcher"
return "reasoning"
# --- Define StateGraph ---
workflow = StateGraph(JARVISState)
workflow.add_node("parse", parse_question)
workflow.add_node("tool_dispatcher", tool_dispatcher)
workflow.add_node("reasoning", reasoning)
workflow.set_entry_point("parse")
workflow.add_conditional_edges(
"parse",
router,
{
"tool_dispatcher": "tool_dispatcher",
"reasoning": "reasoning"
}
)
workflow.add_edge("tool_dispatcher", "reasoning")
workflow.add_edge("reasoning", END)
graph = workflow.compile()
# --- Basic Agent ---
class BasicAgent:
def __init__(self):
logger.info("BasicAgent initialized.")
async def process_question(self, task_id: str, question: str) -> str:
"""Process a single question with file handling."""
file_type = "jpg" if "image" in question.lower() else "txt"
if "menu" in question.lower() or "report" in question.lower():
file_type = "pdf"
elif "data" in question.lower():
file_type = "xlsx"
file_path = f"temp_{task_id}.{file_type}"
file_available, file_ext = await test_gaia_api(task_id, file_type)
if file_available:
try:
async with aiohttp.ClientSession() as session:
async with session.get(f"{GAIA_FILE_URL}{task_id}.{file_ext}") as resp:
if resp.status == 200:
with open(file_path, "wb") as f:
f.write(await resp.read())
else:
logger.warning(f"Failed to fetch file for {task_id}: HTTP {resp.status}")
except Exception as e:
logger.error(f"Error downloading file for task {task_id}: {str(e)}")
state = JARVISState(
task_id=task_id,
question=question,
tools_needed=["search_tool"],
web_results=[],
file_results="",
image_results="",
calculation_results="",
document_results="",
messages=[HumanMessage(content=question)],
answer=""
)
try:
result = await graph.ainvoke(state)
answer = result["answer"] or "Unknown"
logger.info(f"Task {task_id}: Final answer generated: {answer}")
return answer
except Exception as e:
logger.error(f"Error processing task {task_id}: {e}")
return f"Error: {str(e)}"
finally:
for ext in ["txt", "csv", "xlsx", "jpg", "pdf"]:
file_path = f"temp_{task_id}.{ext}"
if os.path.exists(file_path):
try:
os.remove(file_path)
except Exception as e:
logger.error(f"Error removing file {file_path}: {e}")
async def async_call(self, question: str, task_id: str) -> str:
return await self.process_question(question, task_id)
def __call__(self, question: str, task_id: str = None) -> str:
logger.info(f"Processing question: {question[:50]}...")
if task_id is None:
task_id = "unknown_task_id"
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(self.async_call(question, task_id))
# --- Evaluation and Submission ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""Run evaluation and submit answers to GAIA API."""
if not profile:
logger.error("User not logged in.")
return "Please Login to Hugging Face.", None
username = f"{profile.username}"
logger.info(f"User logged in: {username}")
questions_url = f"{GAIA_API_URL}/questions"
submit_url = f"{GAIA_API_URL}/submit"
agent_code = f"https://huggingface.co/spaces/{SPACE_ID}/tree/main"
try:
agent = BasicAgent()
except Exception as e:
logger.error(f"Agent initialization failed: {e}")
return f"Error initializing agent: {e}", None
logger.info(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
logger.error("Empty questions list.")
return "No questions fetched.", None
logger.info(f"Fetched {len(questions_data)} questions.")
except Exception as e:
logger.error(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
logger.info(f"Processing {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
logger.warning(f"Skipping invalid item: {item}")
continue
try:
submitted_answer = agent(question_text, task_id)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
logger.error(f"Error for task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
logger.error("No answers generated.")
return "No answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
logger.info(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=120)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
logger.error(f"Submission failed: {e}")
results_df = pd.DataFrame(results_log)
return f"Submission Failed: {e}", results_df
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Evolved JARVIS Agent Evaluation")
gr.Markdown(
"""
**Instructions:**
1. Log in to Hugging Face using the button below.
2. Click 'Run Evaluation & Submit All Answers' to process GAIA questions and submit.
---
**Disclaimers:**
Uses Hugging Face Inference, SERPAPI, and OpenWeatherMap for GAIA benchmark.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
# --- Main ---
if __name__ == "__main__":
logger.info("\n" + "-"*30 + " App Starting " + "-"*30)
logger.info(f"SPACE_ID: {SPACE_ID}")
logger.info("Launching Gradio Interface...")
demo.launch(debug=True, share=False) |