Spaces:
Starting
Starting
feat(advance): Deploy corrected app.py and tools fo advance functions
Browse files- README.md +56 -16
- __init__.py +0 -0
- app.py +281 -281
- dockerfile +3 -6
- graph.py +0 -143
- project_struct.txt +21 -0
- requirements.txt +18 -89
- retriever.py +34 -0
- state_log.json +0 -0
- tools/__init__.py +5 -1
- tools/calculator.py +1 -1
- tools/document_retriever.py +1 -1
- tools/duckduckgo_search.py +6 -0
- tools/file_parser.py +4 -1
- tools/guest_info.py +20 -0
- tools/hub_stats.py +18 -0
- tools/image_parser.py +1 -2
- tools/retriever.py +0 -80
- tools/search.py +21 -66
- tools/weather_info.py +28 -0
README.md
CHANGED
@@ -1,39 +1,79 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🐢
|
4 |
colorFrom: indigo
|
5 |
colorTo: green
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
license: mit
|
9 |
-
short_description:
|
10 |
---
|
11 |
|
12 |
-
#
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
## Features
|
17 |
|
18 |
-
- **Web Search**:
|
19 |
-
- **
|
20 |
-
- **
|
21 |
-
- **
|
22 |
-
- **
|
|
|
|
|
23 |
|
24 |
## Prerequisites
|
25 |
|
26 |
- Python 3.11
|
27 |
- Tesseract OCR (`brew install tesseract` on macOS)
|
28 |
-
- API keys
|
29 |
-
-
|
30 |
-
-
|
31 |
-
-
|
32 |
-
-
|
33 |
|
34 |
## Setup
|
35 |
|
36 |
1. **Clone the Repository**:
|
37 |
```bash
|
38 |
-
git clone https://
|
39 |
-
cd jarvis_gaia_agent
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: JARVIS Gaia Agent
|
3 |
emoji: 🐢
|
4 |
colorFrom: indigo
|
5 |
colorTo: green
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
license: mit
|
9 |
+
short_description: Enhanced JARVIS AI agent for GAIA benchmark
|
10 |
---
|
11 |
|
12 |
+
# Evolved JARVIS Gaia Agent
|
13 |
|
14 |
+
An advanced Python-based AI agent combining `langchain`, `smolagents`, SERPAPI, and OCR for web searches, file parsing, and data retrieval. Deployed as a Hugging Face Space for GAIA benchmark evaluation.
|
15 |
+
|
16 |
+
#### Directory Structure
|
17 |
+
```
|
18 |
+
jarvis_gaia_agent/
|
19 |
+
├── app.py # Main application with Gradio interface and agent logic
|
20 |
+
├── state.py # Defines JARVISState for state management
|
21 |
+
├── retriever.py # Guest info retriever tool
|
22 |
+
├── tools/ # Directory for all tools
|
23 |
+
│ ├── __init__.py # Exports all tools
|
24 |
+
│ ├── search.py # Web search tools (SERPAPI-based)
|
25 |
+
│ ├── file_parser.py # File parsing tool (CSV, TXT, PDF, Excel)
|
26 |
+
│ ├── image_parser.py # Image parsing tool (OCR)
|
27 |
+
│ ├── calculator.py # Calculator tool
|
28 |
+
│ ├── document_retriever.py # Document retrieval tool
|
29 |
+
│ ├── duckduckgo_search.py # DuckDuckGo search tool (from smolagents)
|
30 |
+
│ ├── weather_info.py # Weather info tool (OpenWeatherMap)
|
31 |
+
│ ├── hub_stats.py # Hugging Face Hub stats tool
|
32 |
+
│ ├── guest_info.py # Guest info retriever tool (moved from retriever.py)
|
33 |
+
├── requirements.txt # Python dependencies
|
34 |
+
├── Dockerfile # Docker configuration
|
35 |
+
├── README.md # Project documentation
|
36 |
+
├── .env # Environment variables (not committed)
|
37 |
+
```
|
38 |
|
39 |
## Features
|
40 |
|
41 |
+
- **Web Search**: SERPAPI and DuckDuckGo for robust searches.
|
42 |
+
- **File Parsing**: Handles CSV, TXT, PDF, and Excel files.
|
43 |
+
- **Image Parsing**: OCR with `easyocr` for image-based questions.
|
44 |
+
- **Data Retrieval**: Guest info retriever for structured data.
|
45 |
+
- **External APIs**: Weather (OpenWeatherMap), Hugging Face Hub stats.
|
46 |
+
- **State Management**: `langgraph` for multi-step reasoning.
|
47 |
+
- **Exact-Match Answers**: Optimized for GAIA Level 1 questions.
|
48 |
|
49 |
## Prerequisites
|
50 |
|
51 |
- Python 3.11
|
52 |
- Tesseract OCR (`brew install tesseract` on macOS)
|
53 |
+
- API keys in `.env`:
|
54 |
+
- `HUGGINGFACEHUB_API_TOKEN`
|
55 |
+
- `SERPAPI_API_KEY`
|
56 |
+
- `OPENWEATHERMAP_API_KEY`
|
57 |
+
- `SPACE_ID`
|
58 |
|
59 |
## Setup
|
60 |
|
61 |
1. **Clone the Repository**:
|
62 |
```bash
|
63 |
+
git clone https://huggingface.co/spaces/onisj/jarvis_gaia_agent
|
64 |
+
cd jarvis_gaia_agent
|
65 |
+
```
|
66 |
+
|
67 |
+
2. **Set Up Environment Variables**:
|
68 |
+
Create a `.env` file with your API keys.
|
69 |
+
|
70 |
+
3. **Run Locally**:
|
71 |
+
```bash
|
72 |
+
pip install -r requirements.txt
|
73 |
+
python app.py
|
74 |
+
```
|
75 |
+
|
76 |
+
4. **Deploy to Hugging Face Space**:
|
77 |
+
- Push code to your Space.
|
78 |
+
- Set environment variables in Space settings.
|
79 |
+
- Run evaluation via Gradio interface.
|
__init__.py
ADDED
File without changes
|
app.py
CHANGED
@@ -1,25 +1,28 @@
|
|
1 |
import os
|
2 |
-
import gradio as gr
|
3 |
-
import requests
|
4 |
-
import aiohttp
|
5 |
-
import asyncio
|
6 |
import json
|
|
|
|
|
|
|
7 |
import nest_asyncio
|
8 |
-
|
9 |
-
from langgraph.checkpoint.memory import MemorySaver
|
10 |
-
from langchain_huggingface import HuggingFacePipeline
|
11 |
-
from transformers import pipeline
|
12 |
-
from langchain_core.messages import SystemMessage, HumanMessage
|
13 |
-
from tools import search_tool, multi_hop_search_tool, file_parser_tool, image_parser_tool, calculator_tool, document_retriever_tool
|
14 |
-
from tools.search import initialize_search_tools
|
15 |
-
from state import JARVISState
|
16 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
from dotenv import load_dotenv
|
18 |
-
import
|
19 |
-
from
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
#
|
22 |
-
logging.basicConfig(level=logging.INFO, format=
|
23 |
logger = logging.getLogger(__name__)
|
24 |
|
25 |
# Apply nest_asyncio
|
@@ -27,252 +30,253 @@ nest_asyncio.apply()
|
|
27 |
|
28 |
# Load environment variables
|
29 |
load_dotenv()
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# Verify environment variables
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
logger.info(f"
|
37 |
|
38 |
-
# Initialize
|
39 |
try:
|
40 |
-
|
41 |
-
"
|
42 |
-
|
43 |
-
|
44 |
-
max_new_tokens=512,
|
45 |
-
do_sample=True,
|
46 |
-
temperature=0.7
|
47 |
)
|
48 |
-
|
49 |
-
logger.info("HuggingFace model initialized: mistralai/Mixtral-7B-Instruct-v0.1")
|
50 |
except Exception as e:
|
51 |
-
logger.error(f"Failed to initialize
|
52 |
llm = None
|
53 |
|
54 |
-
# Initialize search tools with LLM
|
55 |
try:
|
56 |
-
|
57 |
-
logger.info("
|
58 |
except Exception as e:
|
59 |
-
logger.error(f"Failed to initialize
|
60 |
-
|
61 |
-
# Initialize Langfuse
|
62 |
-
try:
|
63 |
-
langfuse = CallbackHandler(
|
64 |
-
public_key=os.getenv("LANGFUSE_PUBLIC_KEY"),
|
65 |
-
secret_key=os.getenv("LANGFUSE_SECRET_KEY"),
|
66 |
-
host=os.getenv("LANGFUSE_HOST", "https://cloud.langfuse.com")
|
67 |
-
)
|
68 |
-
logger.info("Langfuse initialized successfully")
|
69 |
-
except Exception as e:
|
70 |
-
logger.warning(f"Failed to initialize Langfuse: {e}")
|
71 |
-
langfuse = None
|
72 |
-
|
73 |
-
# Initialize MemorySaver
|
74 |
-
memory = MemorySaver()
|
75 |
-
use_checkpointing = True
|
76 |
-
|
77 |
-
# --- Constants ---
|
78 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space/api"
|
79 |
-
GAIA_FILE_URL = "https://api.gaia-benchmark.com/files/"
|
80 |
|
81 |
# --- Helper Functions ---
|
82 |
-
def
|
83 |
-
"""
|
84 |
-
try:
|
85 |
-
log_entry = {
|
86 |
-
"task_id": task_id,
|
87 |
-
"question": state["question"],
|
88 |
-
"tools_needed": state["tools_needed"],
|
89 |
-
"web_results": state["web_results"],
|
90 |
-
"file_results": state["file_results"],
|
91 |
-
"image_results": state["image_results"],
|
92 |
-
"calculation_results": state["calculation_results"],
|
93 |
-
"document_results": state["document_results"],
|
94 |
-
"answer": state["answer"]
|
95 |
-
}
|
96 |
-
with open("state_log.json", "a") as f:
|
97 |
-
json.dump(log_entry, f, indent=2)
|
98 |
-
f.write("\n")
|
99 |
-
except Exception as e:
|
100 |
-
logger.error(f"Error logging state for task {task_id}: {e}")
|
101 |
-
|
102 |
-
async def test_gaia_api(task_id: str) -> bool:
|
103 |
-
"""Test connectivity to GAIA file API"""
|
104 |
try:
|
105 |
-
|
106 |
-
async with
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
except Exception as e:
|
109 |
-
logger.warning(f"GAIA API test failed: {e}")
|
110 |
-
return False
|
111 |
|
112 |
# --- Node Functions ---
|
113 |
-
async def parse_question(state:
|
|
|
114 |
try:
|
115 |
question = state["question"]
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
if llm:
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
try:
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
else:
|
127 |
-
|
128 |
-
|
129 |
-
state["tools_needed"] = tools_needed
|
130 |
-
|
131 |
return state
|
132 |
except Exception as e:
|
133 |
-
logger.error(f"Error parsing
|
134 |
-
state["tools_needed"] = []
|
135 |
-
log_state(state["task_id"], state)
|
136 |
return state
|
137 |
|
138 |
async def tool_dispatcher(state: JARVISState) -> JARVISState:
|
|
|
139 |
try:
|
140 |
-
tools_needed = state["tools_needed"]
|
141 |
updated_state = state.copy()
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
-
for tool in tools_needed:
|
145 |
try:
|
146 |
-
if tool == "
|
147 |
-
result = await
|
148 |
-
updated_state["web_results"].extend(
|
149 |
-
elif tool == "
|
150 |
-
result = await
|
151 |
-
updated_state["
|
152 |
-
|
153 |
-
|
154 |
-
updated_state["
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
except Exception as e:
|
162 |
-
logger.warning(f"Error in tool {tool} for task {updated_state['task_id']}: {e}")
|
163 |
-
|
164 |
-
|
|
|
165 |
return updated_state
|
166 |
except Exception as e:
|
167 |
-
logger.error(f"
|
168 |
-
log_state(state["task_id"], state)
|
169 |
return state
|
170 |
|
171 |
-
async def
|
172 |
-
|
173 |
-
results = []
|
174 |
-
if "web_search" in state["tools_needed"]:
|
175 |
-
result = await search_tool.invoke({"query": state["question"]})
|
176 |
-
results.append(result)
|
177 |
-
if "multi_hop_search" in state["tools_needed"]:
|
178 |
-
result = await multi_hop_search_tool.invoke({"query": state["question"], "steps": 3})
|
179 |
-
results.append(result)
|
180 |
-
return {"web_results": results}
|
181 |
-
except Exception as e:
|
182 |
-
logger.error(f"Error in web search for task {state['task_id']}: {e}")
|
183 |
-
return {"web_results": []}
|
184 |
-
|
185 |
-
async def file_parser_agent(state: JARVISState) -> JARVISState:
|
186 |
-
try:
|
187 |
-
if "file_parser" in state["tools_needed"]:
|
188 |
-
file_type = "csv" if "data" in state["question"].lower() else "txt"
|
189 |
-
result = await file_parser_tool.aparse(state["task_id"], file_type=file_type)
|
190 |
-
return {"file_results": result}
|
191 |
-
return {"file_results": ""}
|
192 |
-
except Exception as e:
|
193 |
-
logger.error(f"Error in file parser for task {state['task_id']}: {e}")
|
194 |
-
return {"file_results": "File parsing failed"}
|
195 |
-
|
196 |
-
async def image_parser_agent(state: JARVISState) -> JARVISState:
|
197 |
-
try:
|
198 |
-
if "image_parser" in state["tools_needed"]:
|
199 |
-
task = "match" if "fruits" in state["question"].lower() else "describe"
|
200 |
-
match_query = "fruits" if task == "match" else ""
|
201 |
-
file_path = f"temp_{state['task_id']}.jpg"
|
202 |
-
if not os.path.exists(file_path):
|
203 |
-
logger.warning(f"Image file not found for task {state['task_id']}")
|
204 |
-
return {"image_results": "Image file not found"}
|
205 |
-
result = await image_parser_tool.aparse(
|
206 |
-
file_path, task=task, match_query=match_query
|
207 |
-
)
|
208 |
-
return {"image_results": result}
|
209 |
-
return {"image_results": ""}
|
210 |
-
except Exception as e:
|
211 |
-
logger.error(f"Error in image parser for task {state['task_id']}: {e}")
|
212 |
-
return {"image_results": "Image parsing failed"}
|
213 |
-
|
214 |
-
async def calculator_agent(state: JARVISState) -> JARVISState:
|
215 |
-
try:
|
216 |
-
if "calculator" in state["tools_needed"]:
|
217 |
-
prompt = f"Extract a mathematical expression from: {state['question']}\n{state['file_results']}"
|
218 |
-
if llm:
|
219 |
-
response = await llm.ainvoke(prompt, config={"callbacks": [langfuse] if langfuse else []})
|
220 |
-
expression = response.content
|
221 |
-
else:
|
222 |
-
expression = "0"
|
223 |
-
result = await calculator_tool.aparse(expression)
|
224 |
-
return {"calculation_results": result}
|
225 |
-
return {"calculation_results": ""}
|
226 |
-
except Exception as e:
|
227 |
-
logger.error(f"Error in calculator for task {state['task_id']}: {e}")
|
228 |
-
return {"calculation_results": "Calculation failed"}
|
229 |
-
|
230 |
-
async def document_retriever_agent(state: JARVISState) -> JARVISState:
|
231 |
-
try:
|
232 |
-
if "document_retriever" in state["tools_needed"]:
|
233 |
-
file_type = "txt" if "menu" in state["question"].lower() else "csv"
|
234 |
-
if "report" in state["question"].lower() or "document" in state["question"].lower():
|
235 |
-
file_type = "pdf"
|
236 |
-
result = await document_retriever_tool.aparse(
|
237 |
-
state["task_id"], state["question"], file_type=file_type
|
238 |
-
)
|
239 |
-
return {"document_results": result}
|
240 |
-
return {"document_results": ""}
|
241 |
-
except Exception as e:
|
242 |
-
logger.error(f"Error in document retriever for task {state['task_id']}: {e}")
|
243 |
-
return {"document_results": "Document retrieval failed"}
|
244 |
-
|
245 |
-
async def reasoning_agent(state: JARVISState) -> JARVISState:
|
246 |
try:
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
],
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
except Exception as e:
|
270 |
-
logger.error(f"
|
271 |
-
|
272 |
-
log_state(state["task_id"], state)
|
273 |
-
return state
|
274 |
|
275 |
def router(state: JARVISState) -> str:
|
|
|
276 |
if state["tools_needed"]:
|
277 |
return "tool_dispatcher"
|
278 |
return "reasoning"
|
@@ -281,8 +285,7 @@ def router(state: JARVISState) -> str:
|
|
281 |
workflow = StateGraph(JARVISState)
|
282 |
workflow.add_node("parse", parse_question)
|
283 |
workflow.add_node("tool_dispatcher", tool_dispatcher)
|
284 |
-
workflow.add_node("reasoning",
|
285 |
-
|
286 |
workflow.set_entry_point("parse")
|
287 |
workflow.add_conditional_edges(
|
288 |
"parse",
|
@@ -294,97 +297,95 @@ workflow.add_conditional_edges(
|
|
294 |
)
|
295 |
workflow.add_edge("tool_dispatcher", "reasoning")
|
296 |
workflow.add_edge("reasoning", END)
|
|
|
297 |
|
298 |
-
#
|
299 |
-
graph = workflow.compile(checkpointer=memory if use_checkpointing else None)
|
300 |
-
|
301 |
-
# --- Basic Agent Definition ---
|
302 |
class BasicAgent:
|
303 |
def __init__(self):
|
304 |
logger.info("BasicAgent initialized.")
|
305 |
|
306 |
async def process_question(self, task_id: str, question: str) -> str:
|
|
|
307 |
file_type = "jpg" if "image" in question.lower() else "txt"
|
308 |
-
if "menu" in question.lower() or "report" in question.lower()
|
309 |
file_type = "pdf"
|
310 |
elif "data" in question.lower():
|
311 |
-
file_type = "
|
312 |
|
313 |
file_path = f"temp_{task_id}.{file_type}"
|
314 |
-
|
|
|
315 |
try:
|
316 |
async with aiohttp.ClientSession() as session:
|
317 |
-
async with session.get(f"{GAIA_FILE_URL}{task_id}") as resp:
|
318 |
if resp.status == 200:
|
319 |
with open(file_path, "wb") as f:
|
320 |
f.write(await resp.read())
|
321 |
else:
|
322 |
-
logger.warning(f"Failed to
|
323 |
except Exception as e:
|
324 |
-
logger.error(f"Error downloading file for task {task_id}: {e}")
|
325 |
|
326 |
state = JARVISState(
|
327 |
task_id=task_id,
|
328 |
question=question,
|
329 |
-
tools_needed=[],
|
330 |
web_results=[],
|
331 |
file_results="",
|
332 |
image_results="",
|
333 |
calculation_results="",
|
334 |
document_results="",
|
335 |
-
messages=[],
|
336 |
answer=""
|
337 |
)
|
338 |
try:
|
339 |
-
|
340 |
-
|
341 |
-
|
|
|
342 |
except Exception as e:
|
343 |
logger.error(f"Error processing task {task_id}: {e}")
|
344 |
return f"Error: {str(e)}"
|
345 |
finally:
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
|
|
|
|
351 |
|
352 |
async def async_call(self, question: str, task_id: str) -> str:
|
353 |
-
return await self.process_question(
|
354 |
|
355 |
def __call__(self, question: str, task_id: str = None) -> str:
|
356 |
-
logger.info(f"
|
357 |
if task_id is None:
|
358 |
-
|
359 |
-
task_id = "placeholder_task_id"
|
360 |
try:
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
return loop.run_until_complete(self.async_call(question, task_id))
|
367 |
-
finally:
|
368 |
-
pass
|
369 |
|
370 |
-
# ---
|
371 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
372 |
-
|
373 |
if not profile:
|
374 |
logger.error("User not logged in.")
|
375 |
-
return "Please Login to Hugging Face
|
376 |
username = f"{profile.username}"
|
377 |
logger.info(f"User logged in: {username}")
|
378 |
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
383 |
|
384 |
try:
|
385 |
agent = BasicAgent()
|
386 |
except Exception as e:
|
387 |
-
logger.error(f"
|
388 |
return f"Error initializing agent: {e}", None
|
389 |
|
390 |
logger.info(f"Fetching questions from: {questions_url}")
|
@@ -393,8 +394,8 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
393 |
response.raise_for_status()
|
394 |
questions_data = response.json()
|
395 |
if not questions_data:
|
396 |
-
logger.error("
|
397 |
-
return "
|
398 |
logger.info(f"Fetched {len(questions_data)} questions.")
|
399 |
except Exception as e:
|
400 |
logger.error(f"Error fetching questions: {e}")
|
@@ -402,24 +403,24 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
402 |
|
403 |
results_log = []
|
404 |
answers_payload = []
|
405 |
-
logger.info(f"
|
406 |
for item in questions_data:
|
407 |
task_id = item.get("task_id")
|
408 |
question_text = item.get("question")
|
409 |
if not task_id or question_text is None:
|
410 |
-
logger.warning(f"Skipping item
|
411 |
continue
|
412 |
try:
|
413 |
submitted_answer = agent(question_text, task_id)
|
414 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
415 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
416 |
except Exception as e:
|
417 |
-
logger.error(f"Error
|
418 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
419 |
|
420 |
if not answers_payload:
|
421 |
-
logger.error("
|
422 |
-
return "
|
423 |
|
424 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
425 |
logger.info(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
@@ -427,7 +428,6 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
427 |
response = requests.post(submit_url, json=submission_data, timeout=120)
|
428 |
response.raise_for_status()
|
429 |
result_data = response.json()
|
430 |
-
logger.info(f"Server response: {result_data}")
|
431 |
final_status = (
|
432 |
f"Submission Successful!\n"
|
433 |
f"User: {result_data.get('username')}\n"
|
@@ -442,19 +442,19 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
442 |
results_df = pd.DataFrame(results_log)
|
443 |
return f"Submission Failed: {e}", results_df
|
444 |
|
445 |
-
# ---
|
446 |
with gr.Blocks() as demo:
|
447 |
-
gr.Markdown("# JARVIS Agent Evaluation
|
448 |
gr.Markdown(
|
449 |
"""
|
450 |
**Instructions:**
|
451 |
|
452 |
-
1. Log in to
|
453 |
-
2. Click 'Run Evaluation & Submit All Answers' to
|
454 |
|
455 |
---
|
456 |
**Disclaimers:**
|
457 |
-
|
458 |
"""
|
459 |
)
|
460 |
|
@@ -463,16 +463,16 @@ with gr.Blocks() as demo:
|
|
463 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
464 |
|
465 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
466 |
-
results_table = gr.DataFrame(label="Questions and
|
467 |
|
468 |
run_button.click(
|
469 |
fn=run_and_submit_all,
|
470 |
outputs=[status_output, results_table]
|
471 |
)
|
472 |
|
|
|
473 |
if __name__ == "__main__":
|
474 |
logger.info("\n" + "-"*30 + " App Starting " + "-"*30)
|
475 |
-
|
476 |
-
logger.info(f"SPACE_ID: {space_id}")
|
477 |
logger.info("Launching Gradio Interface...")
|
478 |
demo.launch(debug=True, share=False)
|
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
2 |
import json
|
3 |
+
import logging
|
4 |
+
import asyncio
|
5 |
+
import aiohttp
|
6 |
import nest_asyncio
|
7 |
+
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import pandas as pd
|
9 |
+
from typing import Dict, Any, List
|
10 |
+
from langchain_core.prompts import ChatPromptTemplate
|
11 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
12 |
+
from langgraph.graph import StateGraph, END
|
13 |
+
from sentence_transformers import SentenceTransformer
|
14 |
+
import gradio as gr
|
15 |
from dotenv import load_dotenv
|
16 |
+
from huggingface_hub import InferenceClient
|
17 |
+
from state import JARVISState
|
18 |
+
from tools import (
|
19 |
+
search_tool, multi_hop_search_tool, file_parser_tool, image_parser_tool,
|
20 |
+
calculator_tool, document_retriever_tool, duckduckgo_search_tool,
|
21 |
+
weather_info_tool, hub_stats_tool, guest_info_retriever_tool
|
22 |
+
)
|
23 |
|
24 |
+
# Setup logging
|
25 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
26 |
logger = logging.getLogger(__name__)
|
27 |
|
28 |
# Apply nest_asyncio
|
|
|
30 |
|
31 |
# Load environment variables
|
32 |
load_dotenv()
|
33 |
+
SPACE_ID = os.getenv("SPACE_ID", "onisj/jarvis_gaia_agent")
|
34 |
+
GAIA_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
35 |
+
GAIA_FILE_URL = f"{GAIA_API_URL}/files/"
|
36 |
+
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
37 |
|
38 |
# Verify environment variables
|
39 |
+
if not SPACE_ID:
|
40 |
+
raise ValueError("SPACE_ID not set")
|
41 |
+
if not HF_TOKEN:
|
42 |
+
raise ValueError("HUGGINGFACEHUB_API_TOKEN not set")
|
43 |
+
logger.info(f"SPACE_ID: {SPACE_ID}")
|
44 |
|
45 |
+
# Initialize models
|
46 |
try:
|
47 |
+
llm = InferenceClient(
|
48 |
+
model="meta-llama/Meta-Llama-3-8B-Instruct",
|
49 |
+
token=HF_TOKEN,
|
50 |
+
timeout=30
|
|
|
|
|
|
|
51 |
)
|
52 |
+
logger.info("Hugging Face Inference LLM initialized")
|
|
|
53 |
except Exception as e:
|
54 |
+
logger.error(f"Failed to initialize LLM: {e}")
|
55 |
llm = None
|
56 |
|
|
|
57 |
try:
|
58 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
59 |
+
logger.info("Sentence transformer initialized")
|
60 |
except Exception as e:
|
61 |
+
logger.error(f"Failed to initialize embedder: {e}")
|
62 |
+
embedder = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
# --- Helper Functions ---
|
65 |
+
async def test_gaia_api(task_id: str, file_type: str = "txt") -> tuple[bool, str | None]:
|
66 |
+
"""Test if a file exists for the task ID."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
try:
|
68 |
+
for ext in [file_type, "txt", "csv", "xlsx", "jpg", "pdf"]:
|
69 |
+
async with aiohttp.ClientSession() as session:
|
70 |
+
async with session.get(f"{GAIA_FILE_URL}{task_id}.{ext}", timeout=5) as resp:
|
71 |
+
logger.info(f"GAIA API test for task {task_id} with .{ext}: HTTP {resp.status}")
|
72 |
+
if resp.status == 200:
|
73 |
+
file_path = f"temp_{task_id}.{ext}"
|
74 |
+
with open(file_path, "wb") as f:
|
75 |
+
f.write(await resp.read())
|
76 |
+
return True, ext
|
77 |
+
logger.info(f"No file found for task {task_id}")
|
78 |
+
return False, None
|
79 |
except Exception as e:
|
80 |
+
logger.warning(f"GAIA API test failed: {str(e)}")
|
81 |
+
return False, None
|
82 |
|
83 |
# --- Node Functions ---
|
84 |
+
async def parse_question(state: Dict[str, Any]) -> Dict[str, Any]:
|
85 |
+
"""Parse the question to select appropriate tools."""
|
86 |
try:
|
87 |
question = state["question"]
|
88 |
+
task_id = state["task_id"]
|
89 |
+
tools_needed = ["search_tool"]
|
90 |
+
|
91 |
if llm:
|
92 |
+
prompt = ChatPromptTemplate.from_messages([
|
93 |
+
SystemMessage(content="""Select tools from: ['search_tool', 'multi_hop_search_tool', 'file_parser_tool', 'image_parser_tool', 'calculator_tool', 'document_retriever_tool', 'duckduckgo_search_tool', 'weather_info_tool', 'hub_stats_tool', 'guest_info_retriever_tool'].
|
94 |
+
Return JSON list, e.g., ["search_tool", "file_parser_tool"].
|
95 |
+
Rules:
|
96 |
+
- Always include "search_tool" unless purely computational.
|
97 |
+
- Use "multi_hop_search_tool" for complex queries (over 20 words).
|
98 |
+
- Use "file_parser_tool" for data, tables, or Excel.
|
99 |
+
- Use "image_parser_tool" for images/videos.
|
100 |
+
- Use "calculator_tool" for math calculations.
|
101 |
+
- Use "document_retriever_tool" for documents/PDFs.
|
102 |
+
- Use "duckduckgo_search_tool" for additional search capability.
|
103 |
+
- Use "weather_info_tool" for weather-related queries.
|
104 |
+
- Use "hub_stats_tool" for Hugging Face Hub queries.
|
105 |
+
- Use "guest_info_retriever_tool" for guest-related queries.
|
106 |
+
- Output ONLY valid JSON."""),
|
107 |
+
HumanMessage(content=f"Query: {question}")
|
108 |
+
])
|
109 |
try:
|
110 |
+
response = llm.chat_completion(
|
111 |
+
messages=[
|
112 |
+
{"role": "system", "content": prompt[0].content},
|
113 |
+
{"role": "user", "content": prompt[1].content}
|
114 |
+
],
|
115 |
+
max_tokens=512,
|
116 |
+
temperature=0.7
|
117 |
+
)
|
118 |
+
tools_needed = json.loads(response["choices"][0]["message"]["content"].strip())
|
119 |
+
valid_tools = {
|
120 |
+
"search_tool", "multi_hop_search_tool", "file_parser_tool", "image_parser_tool",
|
121 |
+
"calculator_tool", "document_retriever_tool", "duckduckgo_search_tool",
|
122 |
+
"weather_info_tool", "hub_stats_tool", "guest_info_retriever_tool"
|
123 |
+
}
|
124 |
+
tools_needed = [tool for tool in tools_needed if tool in valid_tools]
|
125 |
+
except Exception as e:
|
126 |
+
logger.warning(f"Task {task_id} failed: JSON parse error: {e}")
|
127 |
+
tools_needed = ["search_tool"]
|
128 |
+
|
129 |
+
# Keyword-based fallback
|
130 |
+
question_lower = question.lower()
|
131 |
+
if any(word in question_lower for word in ["image", "video"]):
|
132 |
+
tools_needed.append("image_parser_tool")
|
133 |
+
if any(word in question_lower for word in ["data", "table", "excel"]):
|
134 |
+
tools_needed.append("file_parser_tool")
|
135 |
+
if any(word in question_lower for word in ["calculate", "math"]):
|
136 |
+
tools_needed.append("calculator_tool")
|
137 |
+
if any(word in question_lower for word in ["document", "pdf"]):
|
138 |
+
tools_needed.append("document_retriever_tool")
|
139 |
+
if any(word in question_lower for word in ["weather"]):
|
140 |
+
tools_needed.append("weather_info_tool")
|
141 |
+
if any(word in question_lower for word in ["model", "huggingface"]):
|
142 |
+
tools_needed.append("hub_stats_tool")
|
143 |
+
if any(word in question_lower for word in ["guest", "name", "relation"]):
|
144 |
+
tools_needed.append("guest_info_retriever_tool")
|
145 |
+
if len(question.split()) > 20:
|
146 |
+
tools_needed.append("multi_hop_search_tool")
|
147 |
+
|
148 |
+
file_available, file_ext = await test_gaia_api(task_id)
|
149 |
+
if file_available:
|
150 |
+
if "file_parser_tool" not in tools_needed and any(word in question_lower for word in ["data", "table", "excel"]):
|
151 |
+
tools_needed.append("file_parser_tool")
|
152 |
+
if "image_parser_tool" not in tools_needed and "image" in question_lower:
|
153 |
+
tools_needed.append("image_parser_tool")
|
154 |
+
if "document_retriever_tool" not in tools_needed and file_ext == "pdf":
|
155 |
+
tools_needed.append("document_retriever_tool")
|
156 |
else:
|
157 |
+
tools_needed = [tool for tool in tools_needed if tool not in ["file_parser_tool", "image_parser_tool", "document_retriever_tool"]]
|
158 |
+
|
159 |
+
state["tools_needed"] = list(set(tools_needed)) # Remove duplicates
|
160 |
+
logger.info(f"Task {task_id}: Selected tools: {tools_needed}")
|
161 |
return state
|
162 |
except Exception as e:
|
163 |
+
logger.error(f"Error parsing task {task_id}: {e}")
|
164 |
+
state["tools_needed"] = ["search_tool"]
|
|
|
165 |
return state
|
166 |
|
167 |
async def tool_dispatcher(state: JARVISState) -> JARVISState:
|
168 |
+
"""Dispatch selected tools to process the state."""
|
169 |
try:
|
|
|
170 |
updated_state = state.copy()
|
171 |
+
file_type = "jpg" if "image" in state["question"].lower() else "txt"
|
172 |
+
if "menu" in state["question"].lower() or "report" in state["question"].lower():
|
173 |
+
file_type = "pdf"
|
174 |
+
elif "data" in state["question"].lower():
|
175 |
+
file_type = "xlsx"
|
176 |
+
|
177 |
+
can_download, file_ext = await test_gaia_api(updated_state["task_id"], file_type)
|
178 |
|
179 |
+
for tool in updated_state["tools_needed"]:
|
180 |
try:
|
181 |
+
if tool == "search_tool":
|
182 |
+
result = await search_tool.ainvoke({"query": updated_state["question"]})
|
183 |
+
updated_state["web_results"].extend([r["content"] for r in result])
|
184 |
+
elif tool == "multi_hop_search_tool":
|
185 |
+
result = await multi_hop_search_tool.ainvoke({"query": updated_state["question"], "steps": 3})
|
186 |
+
updated_state["web_results"].extend([r["content"] for r in result])
|
187 |
+
await asyncio.sleep(2) # Rate limit
|
188 |
+
elif tool == "file_parser_tool" and can_download:
|
189 |
+
result = await file_parser_tool.ainvoke({"task_id": updated_state["task_id"], "file_type": file_ext})
|
190 |
+
updated_state["file_results"] = str(result)
|
191 |
+
elif tool == "image_parser_tool" and can_download:
|
192 |
+
result = await image_parser_tool.ainvoke({
|
193 |
+
"file_path": f"temp_{updated_state['task_id']}.{file_ext}",
|
194 |
+
"task": "describe"
|
195 |
+
})
|
196 |
+
updated_state["image_results"] = str(result)
|
197 |
+
elif tool == "calculator_tool":
|
198 |
+
result = await calculator_tool.ainvoke({"expression": updated_state.get("question", "")})
|
199 |
+
updated_state["calculation_results"] = str(result)
|
200 |
+
elif tool == "document_retriever_tool" and can_download:
|
201 |
+
result = await document_retriever_tool.ainvoke({
|
202 |
+
"task_id": updated_state["task_id"],
|
203 |
+
"query": updated_state["question"],
|
204 |
+
"file_type": file_ext
|
205 |
+
})
|
206 |
+
updated_state["document_results"] = str(result)
|
207 |
+
elif tool == "duckduckgo_search_tool":
|
208 |
+
result = await duckduckgo_search_tool.run(updated_state["question"])
|
209 |
+
updated_state["web_results"].append(str(result))
|
210 |
+
elif tool == "weather_info_tool":
|
211 |
+
location = updated_state["question"].split("weather in ")[1].split()[0] if "weather in" in updated_state["question"].lower() else "Unknown"
|
212 |
+
result = await weather_info_tool.ainvoke({"location": location})
|
213 |
+
updated_state["web_results"].append(str(result))
|
214 |
+
elif tool == "hub_stats_tool":
|
215 |
+
author = updated_state["question"].split("by ")[1].split()[0] if "by" in updated_state["question"].lower() else "Unknown"
|
216 |
+
result = await hub_stats_tool.ainvoke({"author": author})
|
217 |
+
updated_state["web_results"].append(str(result))
|
218 |
+
elif tool == "guest_info_retriever_tool":
|
219 |
+
query = updated_state["question"].split("about ")[1] if "about" in updated_state["question"].lower() else updated_state["question"]
|
220 |
+
result = await guest_info_retriever_tool.ainvoke({"query": query})
|
221 |
+
updated_state["web_results"].append(str(result))
|
222 |
except Exception as e:
|
223 |
+
logger.warning(f"Error in tool {tool} for task {updated_state['task_id']}: {str(e)}")
|
224 |
+
updated_state[f"{tool}_results"] = f"Error: {str(e)}"
|
225 |
+
|
226 |
+
logger.info(f"Task {updated_state['task_id']}: Tool results: {updated_state}")
|
227 |
return updated_state
|
228 |
except Exception as e:
|
229 |
+
logger.error(f"Tool dispatch failed for task {state['task_id']}: {e}")
|
|
|
230 |
return state
|
231 |
|
232 |
+
async def reasoning(state: JARVISState) -> Dict[str, Any]:
|
233 |
+
"""Generate exact-match answer with specific formatting."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
try:
|
235 |
+
if not llm:
|
236 |
+
return {"answer": "LLM unavailable"}
|
237 |
+
prompt = ChatPromptTemplate.from_messages([
|
238 |
+
SystemMessage(content="""Provide ONLY the exact answer (e.g., '90', 'HUE'). For USD, use two decimal places (e.g., '1234.00'). For lists, use comma-separated values (e.g., 'Smith, Lee'). For IOC codes, use three-letter codes (e.g., 'ARG'). No explanations or conversational text."""),
|
239 |
+
HumanMessage(content="""Question: {question}
|
240 |
+
Web results: {web_results}
|
241 |
+
File results: {file_results}
|
242 |
+
Image results: {image_results}
|
243 |
+
Calculation results: {calculation_results}
|
244 |
+
Document results: {document_results}""")
|
245 |
+
])
|
246 |
+
response = llm.chat_completion(
|
247 |
+
messages=[
|
248 |
+
{"role": "system", "content": prompt[0].content},
|
249 |
+
{"role": "user", "content": prompt[1].content.format(
|
250 |
+
question=state["question"],
|
251 |
+
web_results="\n".join(state["web_results"]),
|
252 |
+
file_results=state["file_results"],
|
253 |
+
image_results=state["image_results"],
|
254 |
+
calculation_results=state["calculation_results"],
|
255 |
+
document_results=state["document_results"]
|
256 |
+
)}
|
257 |
+
],
|
258 |
+
max_tokens=512,
|
259 |
+
temperature=0.7
|
260 |
+
)
|
261 |
+
answer = response["choices"][0]["message"]["content"].strip()
|
262 |
+
# Clean answer for specific formats
|
263 |
+
if "USD" in state["question"].lower():
|
264 |
+
try:
|
265 |
+
answer = f"{float(answer):.2f}"
|
266 |
+
except ValueError:
|
267 |
+
pass
|
268 |
+
if "before and after" in state["question"].lower():
|
269 |
+
answer = answer.replace(" and ", ", ")
|
270 |
+
elif "IOC code" in state["question"].lower():
|
271 |
+
answer = answer.upper()[:3]
|
272 |
+
logger.info(f"Task {state['task_id']}: Answer: {answer}")
|
273 |
+
return {"answer": answer}
|
274 |
except Exception as e:
|
275 |
+
logger.error(f"Reasoning failed for task {state['task_id']}: {e}")
|
276 |
+
return {"answer": f"Error: {str(e)}"}
|
|
|
|
|
277 |
|
278 |
def router(state: JARVISState) -> str:
|
279 |
+
"""Route based on tools needed."""
|
280 |
if state["tools_needed"]:
|
281 |
return "tool_dispatcher"
|
282 |
return "reasoning"
|
|
|
285 |
workflow = StateGraph(JARVISState)
|
286 |
workflow.add_node("parse", parse_question)
|
287 |
workflow.add_node("tool_dispatcher", tool_dispatcher)
|
288 |
+
workflow.add_node("reasoning", reasoning)
|
|
|
289 |
workflow.set_entry_point("parse")
|
290 |
workflow.add_conditional_edges(
|
291 |
"parse",
|
|
|
297 |
)
|
298 |
workflow.add_edge("tool_dispatcher", "reasoning")
|
299 |
workflow.add_edge("reasoning", END)
|
300 |
+
graph = workflow.compile()
|
301 |
|
302 |
+
# --- Basic Agent ---
|
|
|
|
|
|
|
303 |
class BasicAgent:
|
304 |
def __init__(self):
|
305 |
logger.info("BasicAgent initialized.")
|
306 |
|
307 |
async def process_question(self, task_id: str, question: str) -> str:
|
308 |
+
"""Process a single question with file handling."""
|
309 |
file_type = "jpg" if "image" in question.lower() else "txt"
|
310 |
+
if "menu" in question.lower() or "report" in question.lower():
|
311 |
file_type = "pdf"
|
312 |
elif "data" in question.lower():
|
313 |
+
file_type = "xlsx"
|
314 |
|
315 |
file_path = f"temp_{task_id}.{file_type}"
|
316 |
+
file_available, file_ext = await test_gaia_api(task_id, file_type)
|
317 |
+
if file_available:
|
318 |
try:
|
319 |
async with aiohttp.ClientSession() as session:
|
320 |
+
async with session.get(f"{GAIA_FILE_URL}{task_id}.{file_ext}") as resp:
|
321 |
if resp.status == 200:
|
322 |
with open(file_path, "wb") as f:
|
323 |
f.write(await resp.read())
|
324 |
else:
|
325 |
+
logger.warning(f"Failed to fetch file for {task_id}: HTTP {resp.status}")
|
326 |
except Exception as e:
|
327 |
+
logger.error(f"Error downloading file for task {task_id}: {str(e)}")
|
328 |
|
329 |
state = JARVISState(
|
330 |
task_id=task_id,
|
331 |
question=question,
|
332 |
+
tools_needed=["search_tool"],
|
333 |
web_results=[],
|
334 |
file_results="",
|
335 |
image_results="",
|
336 |
calculation_results="",
|
337 |
document_results="",
|
338 |
+
messages=[HumanMessage(content=question)],
|
339 |
answer=""
|
340 |
)
|
341 |
try:
|
342 |
+
result = await graph.ainvoke(state)
|
343 |
+
answer = result["answer"] or "Unknown"
|
344 |
+
logger.info(f"Task {task_id}: Final answer generated: {answer}")
|
345 |
+
return answer
|
346 |
except Exception as e:
|
347 |
logger.error(f"Error processing task {task_id}: {e}")
|
348 |
return f"Error: {str(e)}"
|
349 |
finally:
|
350 |
+
for ext in ["txt", "csv", "xlsx", "jpg", "pdf"]:
|
351 |
+
file_path = f"temp_{task_id}.{ext}"
|
352 |
+
if os.path.exists(file_path):
|
353 |
+
try:
|
354 |
+
os.remove(file_path)
|
355 |
+
except Exception as e:
|
356 |
+
logger.error(f"Error removing file {file_path}: {e}")
|
357 |
|
358 |
async def async_call(self, question: str, task_id: str) -> str:
|
359 |
+
return await self.process_question(question, task_id)
|
360 |
|
361 |
def __call__(self, question: str, task_id: str = None) -> str:
|
362 |
+
logger.info(f"Processing question: {question[:50]}...")
|
363 |
if task_id is None:
|
364 |
+
task_id = "unknown_task_id"
|
|
|
365 |
try:
|
366 |
+
loop = asyncio.get_event_loop()
|
367 |
+
except RuntimeError:
|
368 |
+
loop = asyncio.new_event_loop()
|
369 |
+
asyncio.set_event_loop(loop)
|
370 |
+
return loop.run_until_complete(self.async_call(question, task_id))
|
|
|
|
|
|
|
371 |
|
372 |
+
# --- Evaluation and Submission ---
|
373 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
374 |
+
"""Run evaluation and submit answers to GAIA API."""
|
375 |
if not profile:
|
376 |
logger.error("User not logged in.")
|
377 |
+
return "Please Login to Hugging Face.", None
|
378 |
username = f"{profile.username}"
|
379 |
logger.info(f"User logged in: {username}")
|
380 |
|
381 |
+
questions_url = f"{GAIA_API_URL}/questions"
|
382 |
+
submit_url = f"{GAIA_API_URL}/submit"
|
383 |
+
agent_code = f"https://huggingface.co/spaces/{SPACE_ID}/tree/main"
|
|
|
384 |
|
385 |
try:
|
386 |
agent = BasicAgent()
|
387 |
except Exception as e:
|
388 |
+
logger.error(f"Agent initialization failed: {e}")
|
389 |
return f"Error initializing agent: {e}", None
|
390 |
|
391 |
logger.info(f"Fetching questions from: {questions_url}")
|
|
|
394 |
response.raise_for_status()
|
395 |
questions_data = response.json()
|
396 |
if not questions_data:
|
397 |
+
logger.error("Empty questions list.")
|
398 |
+
return "No questions fetched.", None
|
399 |
logger.info(f"Fetched {len(questions_data)} questions.")
|
400 |
except Exception as e:
|
401 |
logger.error(f"Error fetching questions: {e}")
|
|
|
403 |
|
404 |
results_log = []
|
405 |
answers_payload = []
|
406 |
+
logger.info(f"Processing {len(questions_data)} questions...")
|
407 |
for item in questions_data:
|
408 |
task_id = item.get("task_id")
|
409 |
question_text = item.get("question")
|
410 |
if not task_id or question_text is None:
|
411 |
+
logger.warning(f"Skipping invalid item: {item}")
|
412 |
continue
|
413 |
try:
|
414 |
submitted_answer = agent(question_text, task_id)
|
415 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
416 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
417 |
except Exception as e:
|
418 |
+
logger.error(f"Error for task {task_id}: {e}")
|
419 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
420 |
|
421 |
if not answers_payload:
|
422 |
+
logger.error("No answers generated.")
|
423 |
+
return "No answers to submit.", pd.DataFrame(results_log)
|
424 |
|
425 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
426 |
logger.info(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
|
|
428 |
response = requests.post(submit_url, json=submission_data, timeout=120)
|
429 |
response.raise_for_status()
|
430 |
result_data = response.json()
|
|
|
431 |
final_status = (
|
432 |
f"Submission Successful!\n"
|
433 |
f"User: {result_data.get('username')}\n"
|
|
|
442 |
results_df = pd.DataFrame(results_log)
|
443 |
return f"Submission Failed: {e}", results_df
|
444 |
|
445 |
+
# --- Gradio Interface ---
|
446 |
with gr.Blocks() as demo:
|
447 |
+
gr.Markdown("# Evolved JARVIS Agent Evaluation")
|
448 |
gr.Markdown(
|
449 |
"""
|
450 |
**Instructions:**
|
451 |
|
452 |
+
1. Log in to Hugging Face using the button below.
|
453 |
+
2. Click 'Run Evaluation & Submit All Answers' to process GAIA questions and submit.
|
454 |
|
455 |
---
|
456 |
**Disclaimers:**
|
457 |
+
Uses Hugging Face Inference, SERPAPI, and OpenWeatherMap for GAIA benchmark.
|
458 |
"""
|
459 |
)
|
460 |
|
|
|
463 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
464 |
|
465 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
466 |
+
results_table = gr.DataFrame(label="Questions and Answers", wrap=True)
|
467 |
|
468 |
run_button.click(
|
469 |
fn=run_and_submit_all,
|
470 |
outputs=[status_output, results_table]
|
471 |
)
|
472 |
|
473 |
+
# --- Main ---
|
474 |
if __name__ == "__main__":
|
475 |
logger.info("\n" + "-"*30 + " App Starting " + "-"*30)
|
476 |
+
logger.info(f"SPACE_ID: {SPACE_ID}")
|
|
|
477 |
logger.info("Launching Gradio Interface...")
|
478 |
demo.launch(debug=True, share=False)
|
dockerfile
CHANGED
@@ -2,23 +2,20 @@ FROM python:3.11-slim
|
|
2 |
|
3 |
WORKDIR /app
|
4 |
|
5 |
-
# Install system dependencies
|
6 |
RUN apt-get update && apt-get install -y \
|
7 |
libgl1-mesa-glx \
|
8 |
libglib2.0-0 \
|
|
|
9 |
tesseract-ocr \
|
10 |
libtesseract-dev \
|
11 |
&& rm -rf /var/lib/apt/lists/*
|
12 |
|
13 |
-
# Copy project files
|
14 |
COPY requirements.txt .
|
15 |
COPY app.py .
|
16 |
-
COPY graph.py .
|
17 |
COPY state.py .
|
|
|
18 |
COPY tools/ tools/
|
19 |
|
20 |
-
# Install Python dependencies
|
21 |
RUN pip install --no-cache-dir -r requirements.txt
|
22 |
|
23 |
-
|
24 |
-
CMD ["python", "app.py"]
|
|
|
2 |
|
3 |
WORKDIR /app
|
4 |
|
|
|
5 |
RUN apt-get update && apt-get install -y \
|
6 |
libgl1-mesa-glx \
|
7 |
libglib2.0-0 \
|
8 |
+
python3-dev \
|
9 |
tesseract-ocr \
|
10 |
libtesseract-dev \
|
11 |
&& rm -rf /var/lib/apt/lists/*
|
12 |
|
|
|
13 |
COPY requirements.txt .
|
14 |
COPY app.py .
|
|
|
15 |
COPY state.py .
|
16 |
+
COPY retriever.py .
|
17 |
COPY tools/ tools/
|
18 |
|
|
|
19 |
RUN pip install --no-cache-dir -r requirements.txt
|
20 |
|
21 |
+
CMD ["python3", "app.py"]
|
|
graph.py
DELETED
@@ -1,143 +0,0 @@
|
|
1 |
-
from langgraph.graph import StateGraph, END
|
2 |
-
from langgraph.checkpoint.memory import MemorySaver
|
3 |
-
from state import JARVISState
|
4 |
-
from langchain_openai import ChatOpenAI
|
5 |
-
from langchain_core.messages import SystemMessage, HumanMessage
|
6 |
-
from tools import search_tool, multi_hop_search_tool, file_parser_tool, image_parser_tool, calculator_tool, document_retriever_tool
|
7 |
-
from langfuse.callback import LangfuseCallbackHandler
|
8 |
-
import json
|
9 |
-
import os
|
10 |
-
from dotenv import load_dotenv
|
11 |
-
|
12 |
-
# Load environment variables
|
13 |
-
load_dotenv()
|
14 |
-
# Debug: Verify environment variables
|
15 |
-
print(f"OPENAI_API_KEY loaded in graph.py: {'set' if os.getenv('OPENAI_API_KEY') else 'not set'}")
|
16 |
-
print(f"LANGFUSE_PUBLIC_KEY loaded in graph.py: {'set' if os.getenv('LANGFUSE_PUBLIC_KEY') else 'not set'}")
|
17 |
-
|
18 |
-
# Initialize LLM and Langfuse
|
19 |
-
api_key = os.getenv("OPENAI_API_KEY")
|
20 |
-
if not api_key:
|
21 |
-
raise ValueError("OPENAI_API_KEY environment variable not set")
|
22 |
-
llm = ChatOpenAI(model="gpt-4o", api_key=api_key)
|
23 |
-
langfuse = LangfuseCallbackHandler(
|
24 |
-
public_key=os.getenv("LANGFUSE_PUBLIC_KEY"),
|
25 |
-
secret_key=os.getenv("LANGFUSE_SECRET_KEY"),
|
26 |
-
host=os.getenv("LANGFUSE_HOST")
|
27 |
-
)
|
28 |
-
memory = MemorySaver()
|
29 |
-
|
30 |
-
# Question Parser Node
|
31 |
-
async def parse_question(state: JARVISState) -> JARVISState:
|
32 |
-
question = state["question"]
|
33 |
-
prompt = f"""Analyze this GAIA question: {question}
|
34 |
-
Determine which tools are needed (web_search, multi_hop_search, file_parser, image_parser, calculator, document_retriever).
|
35 |
-
Return a JSON list of tool names."""
|
36 |
-
response = await llm.ainvoke(prompt, config={"callbacks": [langfuse]})
|
37 |
-
tools_needed = json.loads(response.content)
|
38 |
-
return {"messages": state["messages"] + [response], "tools_needed": tools_needed}
|
39 |
-
|
40 |
-
# Web Search Agent Node
|
41 |
-
async def web_search_agent(state: JARVISState) -> JARVISState:
|
42 |
-
results = []
|
43 |
-
if "web_search" in state["tools_needed"]:
|
44 |
-
result = await search_tool.arun(state["question"])
|
45 |
-
results.append(result)
|
46 |
-
if "multi_hop_search" in state["tools_needed"]:
|
47 |
-
result = await multi_hop_search_tool.aparse(state["question"], steps=3)
|
48 |
-
results.append(result)
|
49 |
-
return {"web_results": results}
|
50 |
-
|
51 |
-
# File Parser Agent Node
|
52 |
-
async def file_parser_agent(state: JARVISState) -> JARVISState:
|
53 |
-
if "file_parser" in state["tools_needed"]:
|
54 |
-
result = await file_parser_tool.aparse(state["task_id"])
|
55 |
-
return {"file_results": result}
|
56 |
-
return {"file_results": ""}
|
57 |
-
|
58 |
-
# Image Parser Agent Node
|
59 |
-
async def image_parser_agent(state: JARVISState) -> JARVISState:
|
60 |
-
if "image_parser" in state["tools_needed"]:
|
61 |
-
task = "match" if "fruits" in state["question"].lower() else "describe"
|
62 |
-
match_query = "fruits" if task == "match" else ""
|
63 |
-
result = await image_parser_tool.aparse(
|
64 |
-
f"temp_{state['task_id']}.jpg", task=task, match_query=match_query
|
65 |
-
)
|
66 |
-
return {"image_results": result}
|
67 |
-
return {"image_results": ""}
|
68 |
-
|
69 |
-
# Calculator Agent Node
|
70 |
-
async def calculator_agent(state: JARVISState) -> JARVISState:
|
71 |
-
if "calculator" in state["tools_needed"]:
|
72 |
-
prompt = f"Extract a mathematical expression from: {state['question']}\n{state['file_results']}"
|
73 |
-
response = await llm.ainvoke(prompt, config={"callbacks": [langfuse]})
|
74 |
-
expression = response.content
|
75 |
-
result = await calculator_tool.aparse(expression)
|
76 |
-
return {"calculation_results": result}
|
77 |
-
return {"calculation_results": ""}
|
78 |
-
|
79 |
-
# Document Retriever Agent Node
|
80 |
-
async def document_retriever_agent(state: JARVISState) -> JARVISState:
|
81 |
-
if "document_retriever" in state["tools_needed"]:
|
82 |
-
file_type = "txt" if "menu" in state["question"].lower() else "csv"
|
83 |
-
if "report" in state["question"].lower() or "document" in state["question"].lower():
|
84 |
-
file_type = "pdf"
|
85 |
-
result = await document_retriever_tool.aparse(
|
86 |
-
state["task_id"], state["question"], file_type=file_type
|
87 |
-
)
|
88 |
-
return {"document_results": result}
|
89 |
-
return {"document_results": ""}
|
90 |
-
|
91 |
-
# Reasoning Agent Node
|
92 |
-
async def reasoning_agent(state: JARVISState) -> JARVISState:
|
93 |
-
prompt = f"""Question: {state['question']}
|
94 |
-
Web Results: {state['web_results']}
|
95 |
-
File Results: {state['file_results']}
|
96 |
-
Image Results: {state['image_results']}
|
97 |
-
Calculation Results: {state['calculation_results']}
|
98 |
-
Document Results: {state['document_results']}
|
99 |
-
|
100 |
-
Synthesize an exact-match answer for the GAIA benchmark.
|
101 |
-
Output only the answer (e.g., '90', 'White;5876')."""
|
102 |
-
response = await llm.ainvoke(
|
103 |
-
[
|
104 |
-
SystemMessage(content="You are JARVIS, a precise assistant for the GAIA benchmark. Provide exact answers only."),
|
105 |
-
HumanMessage(content=prompt)
|
106 |
-
],
|
107 |
-
config={"callbacks": [langfuse]}
|
108 |
-
)
|
109 |
-
return {"answer": response.content, "messages": state["messages"] + [response]}
|
110 |
-
|
111 |
-
# Conditional Edge Router
|
112 |
-
def router(state: JARVISState) -> str:
|
113 |
-
if state["tools_needed"]:
|
114 |
-
return "tools"
|
115 |
-
return "reasoning"
|
116 |
-
|
117 |
-
# Build Graph
|
118 |
-
workflow = StateGraph(JARVISState)
|
119 |
-
workflow.add_node("parse", parse_question)
|
120 |
-
workflow.add_node("web_search", web_search_agent)
|
121 |
-
workflow.add_node("file_parser", file_parser_agent)
|
122 |
-
workflow.add_node("image_parser", image_parser_agent)
|
123 |
-
workflow.add_node("calculator", calculator_agent)
|
124 |
-
workflow.add_node("document_retriever", document_retriever_agent)
|
125 |
-
workflow.add_node("reasoning", reasoning_agent)
|
126 |
-
|
127 |
-
workflow.set_entry_point("parse")
|
128 |
-
workflow.add_conditional_edges(
|
129 |
-
"parse",
|
130 |
-
router,
|
131 |
-
{
|
132 |
-
"tools": ["web_search", "file_parser", "image_parser", "calculator", "document_retriever"],
|
133 |
-
"reasoning": "reasoning"
|
134 |
-
}
|
135 |
-
)
|
136 |
-
workflow.add_edge("web_search", "reasoning")
|
137 |
-
workflow.add_edge("file_parser", "reasoning")
|
138 |
-
workflow.add_edge("image_parser", "reasoning")
|
139 |
-
workflow.add_edge("calculator", "reasoning")
|
140 |
-
workflow.add_edge("document_retriever", "reasoning")
|
141 |
-
workflow.add_edge("reasoning", END)
|
142 |
-
|
143 |
-
graph = workflow.compile(checkpointer=memory)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
project_struct.txt
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
jarvis_gaia_agent/
|
2 |
+
├── app.py # Main application with Gradio interface and agent logic
|
3 |
+
├── state.py # Defines JARVISState for state management
|
4 |
+
├── retriever.py # Guest info retriever tool
|
5 |
+
├── tools/ # Directory for all tools
|
6 |
+
│ ├── __init__.py # Exports all tools
|
7 |
+
│ ├── search.py # Web search tools (SERPAPI-based)
|
8 |
+
│ ├── file_parser.py # File parsing tool (CSV, TXT, PDF, Excel)
|
9 |
+
│ ├── image_parser.py # Image parsing tool (OCR)
|
10 |
+
│ ├── calculator.py # Calculator tool
|
11 |
+
│ ├── document_retriever.py # Document retrieval tool
|
12 |
+
│ ├── duckduckgo_search.py # DuckDuckGo search tool (from smolagents)
|
13 |
+
│ ├── weather_info.py # Weather info tool (OpenWeatherMap)
|
14 |
+
│ ├── hub_stats.py # Hugging Face Hub stats tool
|
15 |
+
│ ├── guest_info.py # Guest info retriever tool (moved from retriever.py)
|
16 |
+
├── requirements.txt # Python dependencies
|
17 |
+
├── Dockerfile # Docker configuration
|
18 |
+
├── README.md # Project documentation
|
19 |
+
├── .env # Environment variables (not committed)
|
20 |
+
|
21 |
+
2 directories, 17 files
|
requirements.txt
CHANGED
@@ -1,89 +1,18 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
httpx==0.27.0
|
20 |
-
httpx-sse==0.4.0
|
21 |
-
huggingface-hub==0.23.4
|
22 |
-
idna==3.7
|
23 |
-
Jinja2==3.1.4
|
24 |
-
jiter==0.5.0
|
25 |
-
joblib==1.4.2
|
26 |
-
jsonpatch==1.33
|
27 |
-
jsonpointer==3.0.0
|
28 |
-
langchain==0.2.11
|
29 |
-
langchain-community==0.2.10
|
30 |
-
langchain-core==0.2.23
|
31 |
-
langchain-openai==0.1.17
|
32 |
-
langchain-text-splitters==0.2.2
|
33 |
-
langfuse==2.36.1
|
34 |
-
langgraph==0.1.15
|
35 |
-
langgraph-checkpoint==1.0.2
|
36 |
-
langsmith==0.1.93
|
37 |
-
lxml==5.2.2
|
38 |
-
markdown-it-py==3.0.0
|
39 |
-
MarkupSafe==2.1.5
|
40 |
-
marshmallow==3.21.3
|
41 |
-
mdurl==0.1.2
|
42 |
-
mpmath==1.3.0
|
43 |
-
msgpack==1.0.8
|
44 |
-
multidict==6.0.5
|
45 |
-
mypy_extensions==1.0.0
|
46 |
-
networkx==3.3
|
47 |
-
numpy==1.26.4
|
48 |
-
openai==1.35.13
|
49 |
-
orjson==3.10.6
|
50 |
-
packaging==23.2
|
51 |
-
pandas==2.2.2
|
52 |
-
pillow==10.4.0
|
53 |
-
primp==0.15.0
|
54 |
-
pydantic==2.8.2
|
55 |
-
pydantic_core==2.20.1
|
56 |
-
Pygments==2.18.0
|
57 |
-
PyPDF2==3.0.1
|
58 |
-
pytesseract==0.3.10
|
59 |
-
python-dateutil==2.9.0.post0
|
60 |
-
python-dotenv==1.0.1
|
61 |
-
pytz==2024.1
|
62 |
-
PyYAML==6.0.1
|
63 |
-
regex==2024.7.24
|
64 |
-
requests==2.32.3
|
65 |
-
requests-toolbelt==1.0.0
|
66 |
-
rich==13.7.1
|
67 |
-
safetensors==0.4.3
|
68 |
-
scikit-learn==1.5.1
|
69 |
-
scipy==1.14.0
|
70 |
-
sentence-transformers==3.0.1
|
71 |
-
six==1.16.0
|
72 |
-
sniffio==1.3.1
|
73 |
-
SQLAlchemy==2.0.31
|
74 |
-
sympy==1.13.1
|
75 |
-
tenacity==8.5.0
|
76 |
-
threadpoolctl==3.5.0
|
77 |
-
tiktoken==0.7.0
|
78 |
-
tokenizers==0.19.1
|
79 |
-
torch==2.2.2
|
80 |
-
tqdm==4.66.4
|
81 |
-
transformers==4.42.4
|
82 |
-
typing-inspect==0.9.0
|
83 |
-
typing_extensions==4.12.2
|
84 |
-
tzdata==2024.1
|
85 |
-
urllib3==2.2.2
|
86 |
-
wrapt==1.16.0
|
87 |
-
xxhash==3.4.1
|
88 |
-
yarl==1.9.4
|
89 |
-
gradio[oauth]==4.44.1
|
|
|
1 |
+
gradio
|
2 |
+
requests
|
3 |
+
pandas
|
4 |
+
PyPDF2
|
5 |
+
easyocr
|
6 |
+
langchain
|
7 |
+
langchain-community
|
8 |
+
langgraph
|
9 |
+
sentence-transformers
|
10 |
+
huggingface_hub
|
11 |
+
python-dotenv
|
12 |
+
aiohttp
|
13 |
+
nest-asyncio
|
14 |
+
sympy
|
15 |
+
openpyxl
|
16 |
+
smolagents
|
17 |
+
datasets
|
18 |
+
asyncio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
retriever.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
from langchain.docstore.document import Document
|
3 |
+
from langchain_community.retrievers import BM25Retriever
|
4 |
+
from smolagents import Tool
|
5 |
+
|
6 |
+
def load_guest_dataset():
|
7 |
+
try:
|
8 |
+
guest_dataset = datasets.load_dataset("agents-course/unit3-invitees", split="train")
|
9 |
+
docs = [
|
10 |
+
Document(
|
11 |
+
page_content="\n".join([
|
12 |
+
f"Name: {guest['name']}",
|
13 |
+
f"Relation: {guest['relation']}",
|
14 |
+
f"Description: {guest['description']}",
|
15 |
+
f"Email: {guest['email']}"
|
16 |
+
]),
|
17 |
+
metadata={"name": guest["name"]}
|
18 |
+
)
|
19 |
+
for guest in guest_dataset
|
20 |
+
]
|
21 |
+
except Exception as e:
|
22 |
+
# Fallback mock dataset
|
23 |
+
docs = [
|
24 |
+
Document(
|
25 |
+
page_content="\n".join([
|
26 |
+
"Name: Dr. Nikola Tesla",
|
27 |
+
"Relation: old friend from university days",
|
28 |
+
"Description: Dr. Nikola Tesla is an old friend from your university days. He's recently patented a new wireless energy transmission system.",
|
29 |
+
"Email: nikola.tesla@gmail.com"
|
30 |
+
]),
|
31 |
+
metadata={"name": "Dr. Nikola Tesla"}
|
32 |
+
)
|
33 |
+
]
|
34 |
+
return docs
|
state_log.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tools/__init__.py
CHANGED
@@ -2,4 +2,8 @@ from .search import search_tool, multi_hop_search_tool
|
|
2 |
from .file_parser import file_parser_tool
|
3 |
from .image_parser import image_parser_tool
|
4 |
from .calculator import calculator_tool
|
5 |
-
from .document_retriever import document_retriever_tool
|
|
|
|
|
|
|
|
|
|
2 |
from .file_parser import file_parser_tool
|
3 |
from .image_parser import image_parser_tool
|
4 |
from .calculator import calculator_tool
|
5 |
+
from .document_retriever import document_retriever_tool
|
6 |
+
from .duckduckgo_search import duckduckgo_search_tool
|
7 |
+
from .weather_info import weather_info_tool
|
8 |
+
from .hub_stats import hub_stats_tool
|
9 |
+
from .guest_info import guest_info_retriever_tool
|
tools/calculator.py
CHANGED
@@ -6,7 +6,7 @@ logger = logging.getLogger(__name__)
|
|
6 |
|
7 |
@tool
|
8 |
async def calculator_tool(expression: str) -> str:
|
9 |
-
"""Evaluate a mathematical expression"""
|
10 |
try:
|
11 |
result = sympify(expression)
|
12 |
return str(result)
|
|
|
6 |
|
7 |
@tool
|
8 |
async def calculator_tool(expression: str) -> str:
|
9 |
+
"""Evaluate a mathematical expression."""
|
10 |
try:
|
11 |
result = sympify(expression)
|
12 |
return str(result)
|
tools/document_retriever.py
CHANGED
@@ -7,7 +7,7 @@ logger = logging.getLogger(__name__)
|
|
7 |
|
8 |
@tool
|
9 |
async def document_retriever_tool(task_id: str, query: str, file_type: str) -> str:
|
10 |
-
"""Retrieve content from a document"""
|
11 |
try:
|
12 |
file_path = f"temp_{task_id}.{file_type}"
|
13 |
if not os.path.exists(file_path):
|
|
|
7 |
|
8 |
@tool
|
9 |
async def document_retriever_tool(task_id: str, query: str, file_type: str) -> str:
|
10 |
+
"""Retrieve content from a document."""
|
11 |
try:
|
12 |
file_path = f"temp_{task_id}.{file_type}"
|
13 |
if not os.path.exists(file_path):
|
tools/duckduckgo_search.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from smolagents import Tool, DuckDuckGoSearchTool
|
2 |
+
import logging
|
3 |
+
|
4 |
+
logger = logging.getLogger(__name__)
|
5 |
+
|
6 |
+
duckduckgo_search_tool = DuckDuckGoSearchTool()
|
tools/file_parser.py
CHANGED
@@ -8,7 +8,7 @@ logger = logging.getLogger(__name__)
|
|
8 |
|
9 |
@tool
|
10 |
async def file_parser_tool(task_id: str, file_type: str) -> str:
|
11 |
-
"""Parse a file based on task_id and file_type"""
|
12 |
try:
|
13 |
file_path = f"temp_{task_id}.{file_type}"
|
14 |
if not os.path.exists(file_path):
|
@@ -26,6 +26,9 @@ async def file_parser_tool(task_id: str, file_type: str) -> str:
|
|
26 |
reader = PyPDF2.PdfReader(f)
|
27 |
text = "".join(page.extract_text() for page in reader.pages)
|
28 |
return text
|
|
|
|
|
|
|
29 |
else:
|
30 |
return f"Unsupported file type: {file_type}"
|
31 |
except Exception as e:
|
|
|
8 |
|
9 |
@tool
|
10 |
async def file_parser_tool(task_id: str, file_type: str) -> str:
|
11 |
+
"""Parse a file based on task_id and file_type."""
|
12 |
try:
|
13 |
file_path = f"temp_{task_id}.{file_type}"
|
14 |
if not os.path.exists(file_path):
|
|
|
26 |
reader = PyPDF2.PdfReader(f)
|
27 |
text = "".join(page.extract_text() for page in reader.pages)
|
28 |
return text
|
29 |
+
elif file_type in ["xlsx", "xls"]:
|
30 |
+
df = pd.read_excel(file_path, engine="openpyxl")
|
31 |
+
return df.to_string()
|
32 |
else:
|
33 |
return f"Unsupported file type: {file_type}"
|
34 |
except Exception as e:
|
tools/guest_info.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_core.tools import tool
|
2 |
+
from retriever import load_guest_dataset
|
3 |
+
import logging
|
4 |
+
|
5 |
+
logger = logging.getLogger(__name__)
|
6 |
+
|
7 |
+
@tool
|
8 |
+
async def guest_info_retriever_tool(query: str) -> str:
|
9 |
+
"""Retrieve detailed information about gala guests based on their name or relation."""
|
10 |
+
try:
|
11 |
+
docs = load_guest_dataset()
|
12 |
+
from langchain_community.retrievers import BM25Retriever
|
13 |
+
retriever = BM25Retriever.from_documents(docs)
|
14 |
+
results = retriever.get_relevant_documents(query)
|
15 |
+
if results:
|
16 |
+
return "\n\n".join([doc.page_content for doc in results[:3]])
|
17 |
+
return "No matching guest information found."
|
18 |
+
except Exception as e:
|
19 |
+
logger.error(f"Error retrieving guest info for query '{query}': {e}")
|
20 |
+
return f"Error: {str(e)}"
|
tools/hub_stats.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_core.tools import tool
|
2 |
+
from huggingface_hub import list_models
|
3 |
+
import logging
|
4 |
+
|
5 |
+
logger = logging.getLogger(__name__)
|
6 |
+
|
7 |
+
@tool
|
8 |
+
async def hub_stats_tool(author: str) -> str:
|
9 |
+
"""Fetch the most downloaded model from a specific author on Hugging Face Hub."""
|
10 |
+
try:
|
11 |
+
models = list(list_models(author=author, sort="downloads", direction=-1, limit=1))
|
12 |
+
if models:
|
13 |
+
model = models[0]
|
14 |
+
return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads."
|
15 |
+
return f"No models found for author {author}."
|
16 |
+
except Exception as e:
|
17 |
+
logger.error(f"Error fetching models for {author}: {e}")
|
18 |
+
return f"Error: {str(e)}"
|
tools/image_parser.py
CHANGED
@@ -4,12 +4,11 @@ import logging
|
|
4 |
import os
|
5 |
|
6 |
logger = logging.getLogger(__name__)
|
7 |
-
|
8 |
reader = easyocr.Reader(['en'])
|
9 |
|
10 |
@tool
|
11 |
async def image_parser_tool(file_path: str, task: str = "describe", match_query: str = "") -> str:
|
12 |
-
"""Parse text from an image"""
|
13 |
try:
|
14 |
if not os.path.exists(file_path):
|
15 |
logger.warning(f"Image not found: {file_path}")
|
|
|
4 |
import os
|
5 |
|
6 |
logger = logging.getLogger(__name__)
|
|
|
7 |
reader = easyocr.Reader(['en'])
|
8 |
|
9 |
@tool
|
10 |
async def image_parser_tool(file_path: str, task: str = "describe", match_query: str = "") -> str:
|
11 |
+
"""Parse text from an image."""
|
12 |
try:
|
13 |
if not os.path.exists(file_path):
|
14 |
logger.warning(f"Image not found: {file_path}")
|
tools/retriever.py
DELETED
@@ -1,80 +0,0 @@
|
|
1 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
2 |
-
from sentence_transformers import SentenceTransformer
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import PyPDF2
|
6 |
-
import os
|
7 |
-
from typing import List, Dict
|
8 |
-
|
9 |
-
class DocumentRetrieverTool:
|
10 |
-
def __init__(self):
|
11 |
-
self.name = "document_retriever"
|
12 |
-
self.description = "Retrieves relevant text from GAIA text-heavy files (CSV, TXT, PDF) using semantic search."
|
13 |
-
self.inputs = {
|
14 |
-
"task_id": {"type": "string", "description": "GAIA task ID for the file"},
|
15 |
-
"query": {"type": "string", "description": "Question or query to search for"},
|
16 |
-
"file_type": {"type": "string", "description": "File type (csv, txt, pdf, default: txt)"}
|
17 |
-
}
|
18 |
-
self.output_type = str
|
19 |
-
self.embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
20 |
-
self.text_splitter = RecursiveCharacterTextSplitter(
|
21 |
-
chunk_size=500,
|
22 |
-
chunk_overlap=50,
|
23 |
-
length_function=len
|
24 |
-
)
|
25 |
-
self.chunks: List[str] = []
|
26 |
-
self.embeddings: np.ndarray = None
|
27 |
-
|
28 |
-
async def aparse(self, task_id: str, query: str, file_type: str = "txt") -> str:
|
29 |
-
"""
|
30 |
-
Loads a GAIA file, splits it into chunks, embeds them, and retrieves relevant text for the query.
|
31 |
-
Supports CSV, TXT, and PDF files.
|
32 |
-
"""
|
33 |
-
try:
|
34 |
-
file_path = f"temp_{task_id}.{file_type}"
|
35 |
-
if not os.path.exists(file_path):
|
36 |
-
return f"File not found for task ID {task_id}"
|
37 |
-
|
38 |
-
# Load and preprocess file
|
39 |
-
text = ""
|
40 |
-
if file_type == "csv":
|
41 |
-
df = pd.read_csv(file_path)
|
42 |
-
text = df.to_string()
|
43 |
-
elif file_type == "txt":
|
44 |
-
with open(file_path, "r", encoding="utf-8") as f:
|
45 |
-
text = f.read()
|
46 |
-
elif file_type == "pdf":
|
47 |
-
with open(file_path, "rb") as f:
|
48 |
-
pdf = PyPDF2.PdfReader(f)
|
49 |
-
text = "".join(page.extract_text() or "" for page in pdf.pages)
|
50 |
-
else:
|
51 |
-
return f"Unsupported file type: {file_type}"
|
52 |
-
|
53 |
-
# Check if text was extracted
|
54 |
-
if not text.strip():
|
55 |
-
return "No extractable text found in file."
|
56 |
-
|
57 |
-
# Split text into chunks
|
58 |
-
self.chunks = self.text_splitter.split_text(text)
|
59 |
-
if not self.chunks:
|
60 |
-
return "No content found in file."
|
61 |
-
|
62 |
-
# Embed chunks and query
|
63 |
-
self.embeddings = self.embedder.encode(self.chunks, convert_to_tensor=True)
|
64 |
-
query_embedding = self.embedder.encode(query, convert_to_tensor=True)
|
65 |
-
|
66 |
-
# Compute cosine similarities
|
67 |
-
from sentence_transformers import util
|
68 |
-
similarities = util.cos_sim(query_embedding, self.embeddings)[0]
|
69 |
-
|
70 |
-
# Get top 3 most relevant chunks
|
71 |
-
top_k = min(3, len(self.chunks))
|
72 |
-
top_indices = similarities.argsort(descending=True)[:top_k]
|
73 |
-
relevant_chunks = [self.chunks[idx] for idx in top_indices]
|
74 |
-
|
75 |
-
# Combine results
|
76 |
-
return "\n\n".join(relevant_chunks)
|
77 |
-
except Exception as e:
|
78 |
-
return f"Error retrieving documents: {str(e)}"
|
79 |
-
|
80 |
-
document_retriever_tool = DocumentRetrieverTool()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tools/search.py
CHANGED
@@ -1,91 +1,46 @@
|
|
1 |
from langchain_core.tools import tool
|
2 |
-
from langchain_huggingface import HuggingFacePipeline
|
3 |
-
from sentence_transformers import SentenceTransformer
|
4 |
import logging
|
5 |
-
from typing import List, Dict, Any
|
6 |
import requests
|
7 |
import os
|
|
|
|
|
8 |
|
9 |
logger = logging.getLogger(__name__)
|
10 |
-
|
11 |
-
# Initialize embedding model (free, open-source)
|
12 |
-
try:
|
13 |
-
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
14 |
-
except Exception as e:
|
15 |
-
logger.error(f"Failed to initialize embedding model: {e}")
|
16 |
-
embedder = None
|
17 |
-
|
18 |
-
# Global LLM instance
|
19 |
-
search_llm = None
|
20 |
-
|
21 |
-
def initialize_search_tools(llm: HuggingFacePipeline) -> None:
|
22 |
-
"""Initialize search tools with the provided LLM"""
|
23 |
-
global search_llm
|
24 |
-
search_llm = llm
|
25 |
-
logger.info("Search tools initialized with HuggingFace LLM")
|
26 |
|
27 |
@tool
|
28 |
async def search_tool(query: str) -> List[Dict[str, Any]]:
|
29 |
-
"""Perform a web search using
|
30 |
try:
|
31 |
-
if not search_llm:
|
32 |
-
logger.warning("Search LLM not initialized")
|
33 |
-
return [{"content": "Search unavailable", "url": ""}]
|
34 |
-
|
35 |
-
# Refine query using LLM
|
36 |
-
prompt = f"Refine this search query for better results: {query}"
|
37 |
-
response = await search_llm.ainvoke(prompt)
|
38 |
-
refined_query = response.content.strip()
|
39 |
-
|
40 |
-
# Check for SerpAPI key (free tier available)
|
41 |
serpapi_key = os.getenv("SERPAPI_API_KEY")
|
42 |
-
if serpapi_key:
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
if embedder:
|
54 |
-
query_embedding = embedder.encode(refined_query)
|
55 |
-
results = [
|
56 |
-
{"content": f"Mock result for {refined_query}", "url": "https://example.com"},
|
57 |
-
{"content": f"Another mock result for {refined_query}", "url": "https://example.org"}
|
58 |
-
]
|
59 |
-
else:
|
60 |
-
results = [{"content": "Embedding model unavailable", "url": ""}]
|
61 |
-
|
62 |
-
logger.info(f"Search results for query '{refined_query}': {len(results)} items")
|
63 |
-
return results
|
64 |
except Exception as e:
|
65 |
logger.error(f"Error in search_tool: {e}")
|
66 |
return [{"content": f"Search failed: {str(e)}", "url": ""}]
|
67 |
|
68 |
@tool
|
69 |
async def multi_hop_search_tool(query: str, steps: int = 3) -> List[Dict[str, Any]]:
|
70 |
-
"""Perform a multi-hop search
|
71 |
try:
|
72 |
-
if not search_llm:
|
73 |
-
logger.warning("Search LLM not initialized")
|
74 |
-
return [{"content": "Multi-hop search unavailable", "url": ""}]
|
75 |
-
|
76 |
results = []
|
77 |
current_query = query
|
78 |
for step in range(steps):
|
79 |
-
|
80 |
-
response = await search_llm.ainvoke(prompt)
|
81 |
-
next_query = response.content.strip()
|
82 |
-
|
83 |
-
step_results = await search_tool.invoke({"query": next_query})
|
84 |
results.extend(step_results)
|
85 |
-
current_query =
|
86 |
-
logger.info(f"Multi-hop step {step + 1}: {
|
87 |
-
|
88 |
-
return results
|
89 |
except Exception as e:
|
90 |
logger.error(f"Error in multi_hop_search_tool: {e}")
|
91 |
return [{"content": f"Multi-hop search failed: {str(e)}", "url": ""}]
|
|
|
1 |
from langchain_core.tools import tool
|
|
|
|
|
2 |
import logging
|
|
|
3 |
import requests
|
4 |
import os
|
5 |
+
from typing import List, Dict, Any
|
6 |
+
from dotenv import load_dotenv
|
7 |
|
8 |
logger = logging.getLogger(__name__)
|
9 |
+
load_dotenv()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
@tool
|
12 |
async def search_tool(query: str) -> List[Dict[str, Any]]:
|
13 |
+
"""Perform a web search using SERPAPI."""
|
14 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
serpapi_key = os.getenv("SERPAPI_API_KEY")
|
16 |
+
if not serpapi_key:
|
17 |
+
logger.error("SERPAPI_API_KEY not set")
|
18 |
+
return [{"content": "Search unavailable: API key missing", "url": ""}]
|
19 |
+
|
20 |
+
params = {"q": query, "api_key": serpapi_key}
|
21 |
+
response = requests.get("https://serpapi.com/search", params=params, timeout=10)
|
22 |
+
response.raise_for_status()
|
23 |
+
results = response.json().get("organic_results", [])
|
24 |
+
logger.info(f"Search results for query '{query}': {len(results)} items")
|
25 |
+
search_results = [{"content": r.get("snippet", ""), "url": r.get("link", "")} for r in results]
|
26 |
+
return search_results or [{"content": "No search results", "url": ""}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
except Exception as e:
|
28 |
logger.error(f"Error in search_tool: {e}")
|
29 |
return [{"content": f"Search failed: {str(e)}", "url": ""}]
|
30 |
|
31 |
@tool
|
32 |
async def multi_hop_search_tool(query: str, steps: int = 3) -> List[Dict[str, Any]]:
|
33 |
+
"""Perform a multi-hop search."""
|
34 |
try:
|
|
|
|
|
|
|
|
|
35 |
results = []
|
36 |
current_query = query
|
37 |
for step in range(steps):
|
38 |
+
step_results = await search_tool.invoke({"query": current_query})
|
|
|
|
|
|
|
|
|
39 |
results.extend(step_results)
|
40 |
+
current_query = f"{current_query} more details"
|
41 |
+
logger.info(f"Multi-hop step {step + 1}: {current_query}")
|
42 |
+
await asyncio.sleep(2) # Avoid rate limits
|
43 |
+
return results or [{"content": "No multi-hop results", "url": ""}]
|
44 |
except Exception as e:
|
45 |
logger.error(f"Error in multi_hop_search_tool: {e}")
|
46 |
return [{"content": f"Multi-hop search failed: {str(e)}", "url": ""}]
|
tools/weather_info.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_core.tools import tool
|
2 |
+
import requests
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
|
7 |
+
logger = logging.getLogger(__name__)
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
@tool
|
11 |
+
async def weather_info_tool(location: str) -> str:
|
12 |
+
"""Fetch real weather information for a given location."""
|
13 |
+
try:
|
14 |
+
api_key = os.getenv("OPENWEATHERMAP_API_KEY")
|
15 |
+
if not api_key:
|
16 |
+
logger.error("OPENWEATHERMAP_API_KEY not set")
|
17 |
+
return "Weather unavailable: API key missing"
|
18 |
+
|
19 |
+
url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={api_key}&units=metric"
|
20 |
+
response = requests.get(url).json()
|
21 |
+
if response.get("cod") == 200:
|
22 |
+
condition = response["weather"][0]["description"]
|
23 |
+
temp = response["main"]["temp"]
|
24 |
+
return f"Weather in {location}: {condition}, {temp}°C"
|
25 |
+
return f"Unable to fetch weather for {location}."
|
26 |
+
except Exception as e:
|
27 |
+
logger.error(f"Error fetching weather for {location}: {e}")
|
28 |
+
return f"Error: {str(e)}"
|