Spaces:
Runtime error
Runtime error
File size: 19,125 Bytes
a4e6738 de34da3 a55826f de34da3 0f77b33 86a22a6 0f77b33 dfc5415 0f77b33 dfc5415 6c2e4ca de34da3 a47cf5c de34da3 3894e3f 14451ef 4159aad 58ad0e0 72df8c8 3894e3f 58ad0e0 72df8c8 58ad0e0 72df8c8 58ad0e0 72df8c8 f42e996 4c60292 58ad0e0 4a4e11d 4c60292 49a7542 72df8c8 49a7542 72df8c8 49a7542 4c60292 0b407fa de34da3 14451ef de34da3 72df8c8 de34da3 4b19f84 dfc5415 61862e4 dfc5415 4b19f84 de34da3 f0d244c 137c79d e7e4657 14451ef e7e4657 72df8c8 e7e4657 80df329 e7e4657 49a7542 dfc5415 de34da3 58ad0e0 de34da3 14451ef de34da3 72df8c8 de34da3 0b407fa de34da3 14451ef de34da3 14451ef 6c2e4ca 4b19f84 8f5c850 de34da3 b322d0b de34da3 14451ef 72df8c8 de34da3 14451ef de34da3 14451ef de34da3 b322d0b de34da3 b322d0b de34da3 6c2e4ca b322d0b 0f77b33 de34da3 6c2e4ca b322d0b 6c2e4ca de34da3 97abb9e 6c2e4ca de34da3 b322d0b de34da3 a47cf5c b322d0b de34da3 a47cf5c b322d0b de34da3 6c2e4ca de34da3 72df8c8 97abb9e 72df8c8 de34da3 f42e996 86a22a6 134ec95 dfc5415 f42e996 4159aad f42e996 97abb9e 14451ef 97abb9e f42e996 97abb9e 0ea3f87 f42e996 0ea3f87 f42e996 80df329 caa1c82 72df8c8 f42e996 dfc5415 f42e996 14451ef 72df8c8 f42e996 3894e3f 14451ef 3d7f2bc 3894e3f 72df8c8 14451ef 3d7f2bc 72df8c8 14451ef 3d7f2bc 72df8c8 14451ef 3d7f2bc 58ad0e0 b55c5db 58ad0e0 14451ef 3d7f2bc 72df8c8 3894e3f 72df8c8 14451ef 3d7f2bc 72df8c8 f42e996 72df8c8 f42e996 cc776b8 f42e996 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
import spaces
import gradio as gr
import torch
import nltk
import numpy as np
from PIL import Image, ImageDraw
from diffusers import DDIMScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
from pipeline_stable_diffusion_xl_opt import StableDiffusionXLPipeline
from injection_utils import register_attention_editor_diffusers
from bounded_attention import BoundedAttention
from pytorch_lightning import seed_everything
REMOTE_MODEL_PATH = "stabilityai/stable-diffusion-xl-base-1.0"
LOCAL_MODEL_PATH = "./model"
RESOLUTION = 256
MIN_SIZE = 0.01
WHITE = 255
COLORS = ["red", "blue", "green", "orange", "purple", "turquoise", "olive"]
PROMPT1 = "a ginger kitten and a gray puppy in a yard"
SUBJECT_SUB_PROMPTS1 = "ginger kitten;gray puppy"
SUBJECT_TOKEN_INDICES1 = "2,3;6,7"
FILTER_TOKEN_INDICES1 = "1,4,5,8,9"
NUM_TOKENS1 = "10"
PROMPT2 = "3 D Pixar animation of a cute unicorn and a pink hedgehog and a nerdy owl traveling in a magical forest"
PROMPT3 = "science fiction movie poster with an astronaut and a robot and a green alien and a spaceship"
PROMPT4 = "a realistic photo of a highway with a semi trailer and a concrete mixer and a helicopter"
PROMPT5 = "a golden retriever and a german shepherd and a boston terrier and an english bulldog and a border collie in a pool"
EXAMPLE_BOXES = {
PROMPT1: [
[0.15, 0.2, 0.45, 0.9],
[0.55, 0.25, 0.85, 0.95],
],
PROMPT2 : [
[0.35, 0.4, 0.65, 0.9],
[0, 0.6, 0.3, 0.9],
[0.7, 0.55, 1, 0.85]
],
PROMPT3: [
[0.4, 0.45, 0.6, 0.95],
[0.2, 0.3, 0.4, 0.85],
[0.6, 0.3, 0.8, 0.85],
[0.1, 0, 0.9, 0.3]
],
PROMPT4: [
[0.05, 0.5, 0.45, 0.85],
[0.55, 0.6, 0.95, 0.85],
[0.3, 0.2, 0.7, 0.45],
],
PROMPT5: [
[0, 0.5, 0.2, 0.8],
[0.2, 0.2, 0.4, 0.5],
[0.4, 0.5, 0.6, 0.8],
[0.6, 0.2, 0.8, 0.5],
[0.8, 0.5, 1, 0.8]
],
}
CSS = """
#paper-info a {
color:#008AD7;
text-decoration: none;
}
#paper-info a:hover {
cursor: pointer;
text-decoration: none;
}
.tooltip {
color: #555;
position: relative;
display: inline-block;
cursor: pointer;
}
.tooltip .tooltiptext {
visibility: hidden;
width: 400px;
background-color: #555;
color: #fff;
text-align: center;
padding: 5px;
border-radius: 5px;
position: absolute;
z-index: 1; /* Set z-index to 1 */
left: 10px;
top: 100%;
opacity: 0;
transition: opacity 0.3s;
}
.tooltip:hover .tooltiptext {
visibility: visible;
opacity: 1;
z-index: 9999; /* Set a high z-index value when hovering */
}
"""
DESCRIPTION = """
<p style="text-align: center; font-weight: bold;">
<span style="font-size: 28px">Bounded Attention</span>
<br>
<span style="font-size: 18px" id="paper-info">
[<a href="https://omer11a.github.io/bounded-attention/" target="_blank">Project Page</a>]
[<a href="https://arxiv.org/abs/2403.16990" target="_blank">Paper</a>]
[<a href="https://github.com/omer11a/bounded-attention" target="_blank">GitHub</a>]
</span>
</p>
"""
COPY_LINK = """
<a href="https://huggingface.co/spaces/omer11a/bounded-attention?duplicate=true">
<img src="https://bit.ly/3gLdBN6" alt="Duplicate Space">
</a>
Duplicate this space to generate more samples without waiting in queue.
<br>
To get better results, increase the number of guidance steps to 15.
"""
ADVANCED_OPTION_DESCRIPTION = """
<div class="tooltip" >Number of guidance steps ⓘ
<span class="tooltiptext">The number of timesteps in which to perform guidance. Recommended value is 15, but increasing this will also increases the runtime.</span>
</div>
<div class="tooltip">Batch size ⓘ
<span class="tooltiptext">The number of images to generate.</span>
</div>
<div class="tooltip">Initial step size ⓘ
<span class="tooltiptext">The initial step size of the linear step size scheduler when performing guidance.</span>
</div>
<div class="tooltip">Final step size ⓘ
<span class="tooltiptext">The final step size of the linear step size scheduler when performing guidance.</span>
</div>
<div class="tooltip">First refinement step ⓘ
<span class="tooltiptext">The timestep from which subject mask refinement is performed.</span>
</div>
<div class="tooltip">Number of self-attention clusters per subject ⓘ
<span class="tooltiptext">The number of clusters computed when clustering the self-attention maps (#clusters = #subject x #clusters_per_subject). Changing this value might improve semantics (adherence to the prompt), especially when the subjects exceed their bounding boxes.</span>
</div>
<div class="tooltip">Cross-attention loss scale factor ⓘ
<span class="tooltiptext">The scale factor of the cross-attention loss term. Increasing it will improve semantic control (adherence to the prompt), but may reduce image quality.</span>
</div>
<div class="tooltip">Self-attention loss scale factor ⓘ
<span class="tooltiptext">The scale factor of the self-attention loss term. Increasing it will improve layout control (adherence to the bounding boxes), but may reduce image quality.</span>
</div>
<div class="tooltip" >Number of Gradient Descent iterations per timestep ⓘ
<span class="tooltiptext">The number of Gradient Descent iterations for each timestep when performing guidance.</span>
</div>
<div class="tooltip" >Loss Threshold ⓘ
<span class="tooltiptext">If the loss is below the threshold, Gradient Descent stops for that timestep. </span>
</div>
<div class="tooltip">Classifier-free guidance scale ⓘ
<span class="tooltiptext">The scale factor of classifier-free guidance.</span>
</div>
"""
FOOTNOTE = """
<p>The source code of this demo is based on the <a href="https://huggingface.co/spaces/gligen/demo/tree/main">GLIGEN demo</a>.</p>
"""
def inference(
boxes,
prompts,
subject_sub_prompts,
subject_token_indices,
filter_token_indices,
num_tokens,
init_step_size,
final_step_size,
first_refinement_step,
num_clusters_per_subject,
cross_loss_scale,
self_loss_scale,
classifier_free_guidance_scale,
num_iterations,
loss_threshold,
num_guidance_steps,
seed,
):
if not torch.cuda.is_available():
raise gr.Error("cuda is not available")
device = torch.device("cuda")
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
model = StableDiffusionXLPipeline.from_pretrained(LOCAL_MODEL_PATH, scheduler=scheduler, torch_dtype=torch.float16, device_map="auto")
model.to(device)
model.unet.set_attn_processor(AttnProcessor2_0())
model.enable_sequential_cpu_offload()
seed_everything(seed)
start_code = torch.randn([len(prompts), 4, 128, 128], device=device)
eos_token_index = None if num_tokens is None else num_tokens + 1
editor = BoundedAttention(
boxes,
prompts,
list(range(70, 82)),
list(range(70, 82)),
subject_sub_prompts=subject_sub_prompts,
subject_token_indices=subject_token_indices,
filter_token_indices=filter_token_indices,
eos_token_index=eos_token_index,
cross_loss_coef=cross_loss_scale,
self_loss_coef=self_loss_scale,
max_guidance_iter=num_guidance_steps,
max_guidance_iter_per_step=num_iterations,
start_step_size=init_step_size,
end_step_size=final_step_size,
loss_stopping_value=loss_threshold,
min_clustering_step=first_refinement_step,
num_clusters_per_box=num_clusters_per_subject,
max_resolution=32,
)
register_attention_editor_diffusers(model, editor)
return model(prompts, latents=start_code, guidance_scale=classifier_free_guidance_scale).images
@spaces.GPU(duration=340)
def generate(
prompt,
subject_sub_prompts,
subject_token_indices,
filter_token_indices,
num_tokens,
init_step_size,
final_step_size,
first_refinement_step,
num_clusters_per_subject,
cross_loss_scale,
self_loss_scale,
classifier_free_guidance_scale,
batch_size,
num_iterations,
loss_threshold,
num_guidance_steps,
seed,
boxes,
):
num_subjects = 0
subject_sub_prompts = convert_sub_prompts(subject_sub_prompts)
subject_token_indices = convert_token_indices(subject_token_indices, nested=True)
if subject_sub_prompts is not None:
num_subjects = len(subject_sub_prompts)
if subject_token_indices is not None:
num_subjects = len(subject_token_indices)
if len(boxes) != num_subjects:
raise gr.Error("""
The number of boxes should be equal to the number of subjects.
Number of boxes drawn: {}, number of subjects: {}.
""".format(len(boxes), num_subjects))
filter_token_indices = convert_token_indices(filter_token_indices) if len(filter_token_indices.strip()) > 0 else None
num_tokens = int(num_tokens) if len(num_tokens.strip()) > 0 else None
prompts = [prompt.strip(".").strip(",").strip()] * batch_size
images = inference(
boxes, prompts, subject_sub_prompts, subject_token_indices, filter_token_indices, num_tokens, init_step_size,
final_step_size, first_refinement_step, num_clusters_per_subject, cross_loss_scale, self_loss_scale,
classifier_free_guidance_scale, num_iterations, loss_threshold, num_guidance_steps, seed)
return images
def convert_sub_prompts(sub_prompts):
sub_prompts = sub_prompts.strip()
if len(sub_prompts) == 0:
return None
return [sub_prompt.strip() for sub_prompt in sub_prompts.split(";")]
def convert_token_indices(token_indices, nested=False):
token_indices = token_indices.strip()
if len(token_indices) == 0:
return None
if nested:
return [convert_token_indices(indices, nested=False) for indices in token_indices.split(";")]
return [int(index.strip()) for index in token_indices.split(",") if len(index.strip()) > 0]
def draw(sketchpad):
boxes = []
for i, layer in enumerate(sketchpad["layers"]):
non_zeros = layer.nonzero()
x1 = x2 = y1 = y2 = 0
if len(non_zeros[0]) > 0:
x1x2 = non_zeros[1] / layer.shape[1]
y1y2 = non_zeros[0] / layer.shape[0]
x1 = x1x2.min()
x2 = x1x2.max()
y1 = y1y2.min()
y2 = y1y2.max()
if (x2 - x1 < MIN_SIZE) or (y2 - y1 < MIN_SIZE):
raise gr.Error(f"Box in layer {i} is too small")
boxes.append((x1, y1, x2, y2))
print(f"Drawn boxes: {boxes}")
layout_image = draw_boxes(boxes)
return [boxes, layout_image]
def draw_boxes(boxes, is_sketch=False):
if len(boxes) == 0:
return None
boxes = np.array(boxes) * RESOLUTION
image = Image.new("RGB", (RESOLUTION, RESOLUTION), (WHITE, WHITE, WHITE))
drawing = ImageDraw.Draw(image)
for i, box in enumerate(boxes.astype(int).tolist()):
color = "black" if is_sketch else COLORS[i % len(COLORS)]
drawing.rectangle(box, outline=color, width=4)
return image
def clear(batch_size):
return [[], None, None, None]
def build_example_layout(prompt, *args):
boxes = EXAMPLE_BOXES[prompt]
print(f"Loaded boxes: {boxes}")
composite = draw_boxes(boxes, is_sketch=True)
sketchpad = {"background": None, "layers": [], "composite": composite}
layout_image = draw_boxes(boxes)
return boxes, sketchpad, layout_image
def main():
nltk.download("averaged_perceptron_tagger")
model = StableDiffusionXLPipeline.from_pretrained(REMOTE_MODEL_PATH)
model.save_pretrained(LOCAL_MODEL_PATH)
del model
with gr.Blocks(
css=CSS,
title="Bounded Attention demo",
) as demo:
gr.HTML(DESCRIPTION)
gr.HTML(COPY_LINK)
with gr.Column():
gr.HTML("Scroll down to see examples of the required input format.")
prompt = gr.Textbox(
label="Text prompt",
placeholder=PROMPT1,
)
subject_sub_prompts = gr.Textbox(
label="Sub-prompts for each subject (separate with semicolons)",
placeholder=SUBJECT_SUB_PROMPTS1,
)
with gr.Accordion("Precise inputs", open=False):
subject_token_indices = gr.Textbox(
label="Optional: The token indices of each subject (separate indices for the same subject with commas, and for different subjects with semicolons)",
placeholder=SUBJECT_TOKEN_INDICES1,
)
filter_token_indices = gr.Textbox(
label="Optional: The token indices to filter, i.e. conjunctions, numbers, postional relations, etc. (if left empty, this will be automatically inferred)",
placeholder=FILTER_TOKEN_INDICES1,
)
num_tokens = gr.Textbox(
label="Optional: The number of tokens in the prompt (We use this to verify your input, as sometimes rare words are split into more than one token)",
placeholder=NUM_TOKENS1,
)
with gr.Row():
sketchpad = gr.Sketchpad(label="Sketch Pad (draw each bounding box in a different layer)")
layout_image = gr.Image(type="pil", label="Bounding Boxes", interactive=False)
with gr.Row():
generate_layout_button = gr.Button(value="Generate layout")
generate_image_button = gr.Button(value="Generate image")
clear_button = gr.Button(value="Clear")
with gr.Row():
out_images = gr.Gallery(type="pil", label="Generated Images", interactive=False)
with gr.Accordion("Advanced Options", open=False):
with gr.Column():
gr.HTML(ADVANCED_OPTION_DESCRIPTION)
batch_size = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Number of samples (limited to one sample on current space)")
num_guidance_steps = gr.Slider(minimum=5, maximum=20, step=1, value=8, label="Number of timesteps to perform guidance")
init_step_size = gr.Slider(minimum=0, maximum=50, step=0.5, value=30, label="Initial step size")
final_step_size = gr.Slider(minimum=0, maximum=20, step=0.5, value=15, label="Final step size")
first_refinement_step = gr.Slider(minimum=0, maximum=50, step=1, value=15, label="The timestep from which to start refining the subject masks")
num_clusters_per_subject = gr.Slider(minimum=0, maximum=5, step=0.5, value=3, label="Number of clusters per subject")
cross_loss_scale = gr.Slider(minimum=0, maximum=2, step=0.1, value=1, label="Cross-attention loss scale factor")
self_loss_scale = gr.Slider(minimum=0, maximum=2, step=0.1, value=1, label="Self-attention loss scale factor")
num_iterations = gr.Slider(minimum=0, maximum=10, step=1, value=5, label="Number of Gradient Descent iterations")
loss_threshold = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Loss threshold")
classifier_free_guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Classifier-free guidance Scale")
seed = gr.Slider(minimum=0, maximum=1000, step=1, value=445, label="Random Seed")
boxes = gr.State([])
clear_button.click(
clear,
inputs=[batch_size],
outputs=[boxes, sketchpad, layout_image, out_images],
queue=False,
)
generate_layout_button.click(
draw,
inputs=[sketchpad],
outputs=[boxes, layout_image],
queue=False,
)
generate_image_button.click(
fn=generate,
inputs=[
prompt, subject_sub_prompts, subject_token_indices, filter_token_indices, num_tokens,
init_step_size, final_step_size, first_refinement_step, num_clusters_per_subject, cross_loss_scale, self_loss_scale,
classifier_free_guidance_scale, batch_size, num_iterations, loss_threshold, num_guidance_steps,
seed,
boxes,
],
outputs=[out_images],
queue=True,
)
with gr.Column():
gr.Examples(
examples=[
[
PROMPT1, SUBJECT_SUB_PROMPTS1, SUBJECT_TOKEN_INDICES1, FILTER_TOKEN_INDICES1, NUM_TOKENS1,
15, 10, 15, 3, 1, 1,
7.5, 1, 5, 0.2, 8,
12,
],
[
PROMPT2, "cute unicorn;pink hedgehog;nerdy owl", "7,8,17;11,12,17;15,16,17", "5,6,9,10,13,14,18,19", "21",
25, 18, 15, 3, 1, 1,
7.5, 1, 5, 0.2, 8,
286,
],
[
PROMPT3, "astronaut;robot;green alien;spaceship", "7;10;13,14;17", "5,6,8,9,11,12,15,16", "17",
18, 12, 15, 3, 1, 1,
7.5, 1, 5, 0.2, 8,
216,
],
[
PROMPT4, "semi trailer;concrete mixer;helicopter", "9,10;13,14;17", "1,4,5,7,8,11,12,15,16", "17",
25, 18, 15, 3, 1, 1,
7.5, 1, 5, 0.2, 8,
82,
],
[
PROMPT5, "golden retriever;german shepherd;boston terrier;english bulldog;border collie", "2,3;6,7;10,11;14,15;18,19", "1,4,5,8,9,12,13,16,17,20,21", "22",
18, 12, 15, 3, 1, 1,
7.5, 1, 5, 0.2, 8,
152,
],
],
fn=build_example_layout,
inputs=[
prompt, subject_sub_prompts, subject_token_indices, filter_token_indices, num_tokens,
init_step_size, final_step_size, first_refinement_step, num_clusters_per_subject, cross_loss_scale, self_loss_scale,
classifier_free_guidance_scale, batch_size, num_iterations, loss_threshold, num_guidance_steps,
seed,
],
outputs=[boxes, sketchpad, layout_image],
run_on_click=True,
)
gr.HTML(FOOTNOTE)
demo.launch(show_api=False, show_error=True)
if __name__ == "__main__":
main()
|