Spaces:
Runtime error
Runtime error
Increased optimization steps
Browse files
app.py
CHANGED
@@ -159,13 +159,14 @@ def inference(
|
|
159 |
end_step_size=final_step_size,
|
160 |
loss_stopping_value=loss_threshold,
|
161 |
num_clusters_per_box=num_clusters_per_subject,
|
|
|
162 |
)
|
163 |
|
164 |
register_attention_editor_diffusers(model, editor)
|
165 |
return model(prompts, latents=start_code, guidance_scale=classifier_free_guidance_scale).images
|
166 |
|
167 |
|
168 |
-
@spaces.GPU(duration=
|
169 |
def generate(
|
170 |
prompt,
|
171 |
subject_token_indices,
|
@@ -299,7 +300,7 @@ def main():
|
|
299 |
with gr.Column():
|
300 |
gr.HTML(ADVANCED_OPTION_DESCRIPTION)
|
301 |
batch_size = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Number of samples (limited to one sample on current space)")
|
302 |
-
num_guidance_steps = gr.Slider(minimum=5, maximum=20, step=1, value=
|
303 |
init_step_size = gr.Slider(minimum=0, maximum=50, step=0.5, value=30, label="Initial step size")
|
304 |
final_step_size = gr.Slider(minimum=0, maximum=20, step=0.5, value=15, label="Final step size")
|
305 |
num_clusters_per_subject = gr.Slider(minimum=0, maximum=5, step=0.5, value=3, label="Number of clusters per subject")
|
|
|
159 |
end_step_size=final_step_size,
|
160 |
loss_stopping_value=loss_threshold,
|
161 |
num_clusters_per_box=num_clusters_per_subject,
|
162 |
+
max_resolution=32,
|
163 |
)
|
164 |
|
165 |
register_attention_editor_diffusers(model, editor)
|
166 |
return model(prompts, latents=start_code, guidance_scale=classifier_free_guidance_scale).images
|
167 |
|
168 |
|
169 |
+
@spaces.GPU(duration=400)
|
170 |
def generate(
|
171 |
prompt,
|
172 |
subject_token_indices,
|
|
|
300 |
with gr.Column():
|
301 |
gr.HTML(ADVANCED_OPTION_DESCRIPTION)
|
302 |
batch_size = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Number of samples (limited to one sample on current space)")
|
303 |
+
num_guidance_steps = gr.Slider(minimum=5, maximum=20, step=1, value=8, label="Number of timesteps to perform guidance")
|
304 |
init_step_size = gr.Slider(minimum=0, maximum=50, step=0.5, value=30, label="Initial step size")
|
305 |
final_step_size = gr.Slider(minimum=0, maximum=20, step=0.5, value=15, label="Final step size")
|
306 |
num_clusters_per_subject = gr.Slider(minimum=0, maximum=5, step=0.5, value=3, label="Number of clusters per subject")
|