Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +35 -142
src/streamlit_app.py
CHANGED
@@ -1,140 +1,26 @@
|
|
1 |
import streamlit as st
|
2 |
-
from langchain_community.vectorstores import FAISS
|
3 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
4 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
-
from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
|
6 |
from transformers import pipeline
|
7 |
-
import os
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
MODEL_NAME = "IlyaGusev/saiga_llama3_8b"
|
13 |
|
14 |
-
# Инициализация модели
|
15 |
@st.cache_resource
|
16 |
-
def
|
17 |
return pipeline(
|
18 |
-
"text-generation",
|
19 |
-
model=
|
20 |
-
device_map="auto"
|
21 |
-
model_kwargs={"torch_dtype": "auto"}
|
22 |
)
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
def load_embeddings():
|
27 |
-
return HuggingFaceEmbeddings(model_name="cointegrated/LaBSE-en-ru")
|
28 |
-
|
29 |
-
# Загрузка и обработка документов
|
30 |
-
def process_documents():
|
31 |
-
documents = []
|
32 |
-
|
33 |
-
for filename in os.listdir(DATA_DIR):
|
34 |
-
filepath = os.path.join(DATA_DIR, filename)
|
35 |
-
try:
|
36 |
-
if filename.endswith(".pdf"):
|
37 |
-
loader = PyPDFLoader(filepath)
|
38 |
-
elif filename.endswith(".docx"):
|
39 |
-
loader = Docx2txtLoader(filepath)
|
40 |
-
elif filename.endswith(".txt"):
|
41 |
-
loader = TextLoader(filepath)
|
42 |
-
else:
|
43 |
-
continue
|
44 |
-
|
45 |
-
documents.extend(loader.load())
|
46 |
-
except Exception as e:
|
47 |
-
st.error(f"Ошибка загрузки {filename}: {str(e)}")
|
48 |
-
|
49 |
-
if not documents:
|
50 |
-
return None
|
51 |
-
|
52 |
-
# Разделение текста на чанки
|
53 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
54 |
-
chunk_size=500,
|
55 |
-
chunk_overlap=100
|
56 |
-
)
|
57 |
-
chunks = text_splitter.split_documents(documents)
|
58 |
-
|
59 |
-
# Создание векторного хранилища
|
60 |
-
embeddings = load_embeddings()
|
61 |
-
vectorstore = FAISS.from_documents(chunks, embeddings)
|
62 |
-
vectorstore.save_local(INDEX_DIR)
|
63 |
-
|
64 |
-
return vectorstore
|
65 |
-
|
66 |
-
# Поиск релевантных документов
|
67 |
-
def retrieve_docs(query):
|
68 |
-
if os.path.exists(INDEX_DIR):
|
69 |
-
embeddings = load_embeddings()
|
70 |
-
vectorstore = FAISS.load_local(INDEX_DIR, embeddings)
|
71 |
-
else:
|
72 |
-
vectorstore = process_documents()
|
73 |
-
if vectorstore is None:
|
74 |
-
return []
|
75 |
-
|
76 |
-
results = vectorstore.similarity_search(query, k=3)
|
77 |
-
return [doc.page_content for doc in results]
|
78 |
-
|
79 |
-
# Генерация ответа с RAG
|
80 |
-
def generate_with_rag(query, history):
|
81 |
-
# Получаем релевантные документы
|
82 |
-
context_docs = retrieve_docs(query)
|
83 |
-
|
84 |
-
if not context_docs:
|
85 |
-
context = "Информация не найдена в документах."
|
86 |
-
else:
|
87 |
-
context = "\n\n".join([f"[Документ {i+1}]: {doc}" for i, doc in enumerate(context_docs)])
|
88 |
-
|
89 |
-
# Формируем промпт
|
90 |
-
system_prompt = """
|
91 |
-
Ты ассистент по вопросам магистратуры. Отвечай ТОЛЬКО на основе предоставленной информации.
|
92 |
-
Если в контексте нет ответа - скажи "Я не нашел информации по этому вопросу в документах".
|
93 |
-
"""
|
94 |
-
|
95 |
-
history_str = "\n".join([
|
96 |
-
f"{'Студент' if msg['role']=='user' else 'Ассистент'}: {msg['content']}"
|
97 |
-
for msg in history
|
98 |
-
])
|
99 |
-
|
100 |
-
full_prompt = f"""
|
101 |
-
<|system|>{system_prompt}</s>
|
102 |
-
<|context|>
|
103 |
-
{context}
|
104 |
-
</s>
|
105 |
-
<|history|>
|
106 |
-
{history_str}
|
107 |
-
</s>
|
108 |
-
<|user|>{query}</s>
|
109 |
-
<|assistant|>
|
110 |
-
"""
|
111 |
-
|
112 |
-
# Генерируем ответ
|
113 |
-
generator = load_llm()
|
114 |
-
response = generator(
|
115 |
-
full_prompt,
|
116 |
-
max_new_tokens=1024,
|
117 |
-
temperature=0.3,
|
118 |
-
do_sample=True,
|
119 |
-
eos_token_id=128001
|
120 |
-
)
|
121 |
-
|
122 |
-
return response[0]['generated_text'].split("<|assistant|>")[-1].strip()
|
123 |
-
|
124 |
-
# Интерфейс Streamlit
|
125 |
-
st.title("🎓 Ассистент по магистратуре с RAG")
|
126 |
-
st.write("Загрузите документы в папку 'data' и задавайте вопросы")
|
127 |
-
|
128 |
-
# Загрузка документов
|
129 |
-
if st.sidebar.button("Обновить базу знаний"):
|
130 |
-
with st.spinner("Обработка документов..."):
|
131 |
-
process_documents()
|
132 |
-
st.sidebar.success("База знаний обновлена!")
|
133 |
|
134 |
# История диалога
|
135 |
if "messages" not in st.session_state:
|
136 |
st.session_state.messages = [
|
137 |
-
{"role": "assistant", "content": "Привет!
|
138 |
]
|
139 |
|
140 |
# Отображение истории
|
@@ -142,28 +28,35 @@ for msg in st.session_state.messages:
|
|
142 |
st.chat_message(msg["role"]).write(msg["content"])
|
143 |
|
144 |
# Обработка ввода
|
145 |
-
|
|
|
146 |
# Добавляем вопрос в историю
|
147 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
148 |
st.chat_message("user").write(prompt)
|
149 |
|
150 |
-
#
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
try:
|
153 |
-
response =
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
except Exception as e:
|
158 |
-
|
159 |
|
160 |
# Добавляем ответ в историю
|
161 |
-
st.session_state.messages.append({"role": "assistant", "content":
|
162 |
-
st.chat_message("assistant").write(
|
163 |
-
|
164 |
-
# Кнопка очистки истории
|
165 |
-
if st.sidebar.button("Очистить историю диалога"):
|
166 |
-
st.session_state.messages = [
|
167 |
-
{"role": "assistant", "content": "История очищена. Чем могу помочь?"}
|
168 |
-
]
|
169 |
-
st.rerun()
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
2 |
from transformers import pipeline
|
|
|
3 |
|
4 |
+
# Настройка заголовка
|
5 |
+
st.title("🎓 Ассистент по магистратуре")
|
6 |
+
st.write("Задайте вопросы о поступлении, программах или требованиях")
|
|
|
7 |
|
8 |
+
# Инициализация модели (кэшируется для ускорения)
|
9 |
@st.cache_resource
|
10 |
+
def load_model():
|
11 |
return pipeline(
|
12 |
+
"text-generation",
|
13 |
+
model="IlyaGusev/saiga_llama3_8b",
|
14 |
+
device_map="auto"
|
|
|
15 |
)
|
16 |
|
17 |
+
# Загрузка модели
|
18 |
+
generator = load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# История диалога
|
21 |
if "messages" not in st.session_state:
|
22 |
st.session_state.messages = [
|
23 |
+
{"role": "assistant", "content": "Привет! Я помогу с вопросами о магистратуре. Спрашивайте!"}
|
24 |
]
|
25 |
|
26 |
# Отображение истории
|
|
|
28 |
st.chat_message(msg["role"]).write(msg["content"])
|
29 |
|
30 |
# Обработка ввода
|
31 |
+
prompt = st.chat_input("Ваш вопрос...")
|
32 |
+
if prompt:
|
33 |
# Добавляем вопрос в историю
|
34 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
35 |
st.chat_message("user").write(prompt)
|
36 |
|
37 |
+
# Формируем контекст диалога
|
38 |
+
context = "\n".join(
|
39 |
+
f"{'Ты:' if m['role']=='user' else 'Ассистент:'} {m['content']}"
|
40 |
+
for m in st.session_state.messages
|
41 |
+
)
|
42 |
+
|
43 |
+
# Генерация ответа
|
44 |
+
with st.spinner("Думаю..."):
|
45 |
try:
|
46 |
+
response = generator(
|
47 |
+
context,
|
48 |
+
max_new_tokens=512,
|
49 |
+
temperature=0.7,
|
50 |
+
top_p=0.9,
|
51 |
+
do_sample=True
|
52 |
+
)[0]['generated_text']
|
53 |
+
|
54 |
+
# Извлекаем только последний ответ
|
55 |
+
assistant_reply = response.split("Ассистент:")[-1].strip()
|
56 |
+
|
57 |
except Exception as e:
|
58 |
+
assistant_reply = f"Ошибка: {str(e)}"
|
59 |
|
60 |
# Добавляем ответ в историю
|
61 |
+
st.session_state.messages.append({"role": "assistant", "content": assistant_reply})
|
62 |
+
st.chat_message("assistant").write(assistant_reply)
|
|
|
|
|
|
|
|
|
|
|
|
|
|