Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +167 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,169 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from langchain_community.vectorstores import FAISS
|
3 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
|
6 |
+
from transformers import pipeline
|
7 |
+
import os
|
8 |
|
9 |
+
# Конфигурация
|
10 |
+
DATA_DIR = "data"
|
11 |
+
INDEX_DIR = "faiss_index"
|
12 |
+
MODEL_NAME = "IlyaGusev/saiga_llama3_8b"
|
13 |
+
|
14 |
+
# Инициализация модели
|
15 |
+
@st.cache_resource
|
16 |
+
def load_llm():
|
17 |
+
return pipeline(
|
18 |
+
"text-generation",
|
19 |
+
model=MODEL_NAME,
|
20 |
+
device_map="auto",
|
21 |
+
model_kwargs={"torch_dtype": "auto"}
|
22 |
+
)
|
23 |
+
|
24 |
+
# Инициализация эмбеддингов
|
25 |
+
@st.cache_resource
|
26 |
+
def load_embeddings():
|
27 |
+
return HuggingFaceEmbeddings(model_name="cointegrated/LaBSE-en-ru")
|
28 |
+
|
29 |
+
# Загрузка и обработка документов
|
30 |
+
def process_documents():
|
31 |
+
documents = []
|
32 |
+
|
33 |
+
for filename in os.listdir(DATA_DIR):
|
34 |
+
filepath = os.path.join(DATA_DIR, filename)
|
35 |
+
try:
|
36 |
+
if filename.endswith(".pdf"):
|
37 |
+
loader = PyPDFLoader(filepath)
|
38 |
+
elif filename.endswith(".docx"):
|
39 |
+
loader = Docx2txtLoader(filepath)
|
40 |
+
elif filename.endswith(".txt"):
|
41 |
+
loader = TextLoader(filepath)
|
42 |
+
else:
|
43 |
+
continue
|
44 |
+
|
45 |
+
documents.extend(loader.load())
|
46 |
+
except Exception as e:
|
47 |
+
st.error(f"Ошибка загрузки {filename}: {str(e)}")
|
48 |
+
|
49 |
+
if not documents:
|
50 |
+
return None
|
51 |
+
|
52 |
+
# Разделение текста на чанки
|
53 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
54 |
+
chunk_size=500,
|
55 |
+
chunk_overlap=100
|
56 |
+
)
|
57 |
+
chunks = text_splitter.split_documents(documents)
|
58 |
+
|
59 |
+
# Создание векторного хранилища
|
60 |
+
embeddings = load_embeddings()
|
61 |
+
vectorstore = FAISS.from_documents(chunks, embeddings)
|
62 |
+
vectorstore.save_local(INDEX_DIR)
|
63 |
+
|
64 |
+
return vectorstore
|
65 |
+
|
66 |
+
# Поиск релевантных документов
|
67 |
+
def retrieve_docs(query):
|
68 |
+
if os.path.exists(INDEX_DIR):
|
69 |
+
embeddings = load_embeddings()
|
70 |
+
vectorstore = FAISS.load_local(INDEX_DIR, embeddings)
|
71 |
+
else:
|
72 |
+
vectorstore = process_documents()
|
73 |
+
if vectorstore is None:
|
74 |
+
return []
|
75 |
+
|
76 |
+
results = vectorstore.similarity_search(query, k=3)
|
77 |
+
return [doc.page_content for doc in results]
|
78 |
+
|
79 |
+
# Генерация ответа с RAG
|
80 |
+
def generate_with_rag(query, history):
|
81 |
+
# Получаем релевантные документы
|
82 |
+
context_docs = retrieve_docs(query)
|
83 |
+
|
84 |
+
if not context_docs:
|
85 |
+
context = "Информация не найдена в документах."
|
86 |
+
else:
|
87 |
+
context = "\n\n".join([f"[Документ {i+1}]: {doc}" for i, doc in enumerate(context_docs)])
|
88 |
+
|
89 |
+
# Формируем промпт
|
90 |
+
system_prompt = """
|
91 |
+
Ты ассистент по вопросам магистратуры. Отвечай ТОЛЬКО на основе предоставленной информации.
|
92 |
+
Если в контексте нет ответа - скажи "Я не нашел информации по этому вопросу в документах".
|
93 |
+
"""
|
94 |
+
|
95 |
+
history_str = "\n".join([
|
96 |
+
f"{'Студент' if msg['role']=='user' else 'Ассистент'}: {msg['content']}"
|
97 |
+
for msg in history
|
98 |
+
])
|
99 |
+
|
100 |
+
full_prompt = f"""
|
101 |
+
<|system|>{system_prompt}</s>
|
102 |
+
<|context|>
|
103 |
+
{context}
|
104 |
+
</s>
|
105 |
+
<|history|>
|
106 |
+
{history_str}
|
107 |
+
</s>
|
108 |
+
<|user|>{query}</s>
|
109 |
+
<|assistant|>
|
110 |
+
"""
|
111 |
+
|
112 |
+
# Генерируем ответ
|
113 |
+
generator = load_llm()
|
114 |
+
response = generator(
|
115 |
+
full_prompt,
|
116 |
+
max_new_tokens=1024,
|
117 |
+
temperature=0.3,
|
118 |
+
do_sample=True,
|
119 |
+
eos_token_id=128001
|
120 |
+
)
|
121 |
+
|
122 |
+
return response[0]['generated_text'].split("<|assistant|>")[-1].strip()
|
123 |
+
|
124 |
+
# Интерфейс Streamlit
|
125 |
+
st.title("🎓 Ассистент по магистратуре с RAG")
|
126 |
+
st.write("Загрузите документы в папку 'data' и задавайте вопросы")
|
127 |
+
|
128 |
+
# Загрузка документов
|
129 |
+
if st.sidebar.button("Обновить базу знаний"):
|
130 |
+
with st.spinner("Обработка документов..."):
|
131 |
+
process_documents()
|
132 |
+
st.sidebar.success("База знаний обновлена!")
|
133 |
+
|
134 |
+
# История диалога
|
135 |
+
if "messages" not in st.session_state:
|
136 |
+
st.session_state.messages = [
|
137 |
+
{"role": "assistant", "content": "Привет! Задайте вопрос о магистратуре, и я отвечу на основе документов."}
|
138 |
+
]
|
139 |
+
|
140 |
+
# Отображение истории
|
141 |
+
for msg in st.session_state.messages:
|
142 |
+
st.chat_message(msg["role"]).write(msg["content"])
|
143 |
+
|
144 |
+
# Обработка ввода
|
145 |
+
if prompt := st.chat_input("Ваш вопрос о магистратуре..."):
|
146 |
+
# Добавляем вопрос в историю
|
147 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
148 |
+
st.chat_message("user").write(prompt)
|
149 |
+
|
150 |
+
# Генерация ответа с RAG
|
151 |
+
with st.spinner("Ищу информацию..."):
|
152 |
+
try:
|
153 |
+
response = generate_with_rag(
|
154 |
+
prompt,
|
155 |
+
st.session_state.messages[-5:] # Последние 5 сообщений как контекст
|
156 |
+
)
|
157 |
+
except Exception as e:
|
158 |
+
response = f"Ошибка: {str(e)}"
|
159 |
+
|
160 |
+
# Добавляем ответ в историю
|
161 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
162 |
+
st.chat_message("assistant").write(response)
|
163 |
+
|
164 |
+
# Кнопка очистки истории
|
165 |
+
if st.sidebar.button("Очистить историю диалога"):
|
166 |
+
st.session_state.messages = [
|
167 |
+
{"role": "assistant", "content": "История очищена. Чем могу помочь?"}
|
168 |
+
]
|
169 |
+
st.rerun()
|