File size: 18,769 Bytes
dd36704 aacf53d de5e4b0 5df8f2d de5e4b0 aacf53d 5df8f2d d75daa2 5df8f2d dd36704 5df8f2d dd36704 2ed7694 aacf53d de5e4b0 2ed7694 5df8f2d 2ed7694 5df8f2d 2ed7694 5df8f2d 2ed7694 aacf53d 2ed7694 aacf53d 2ed7694 aacf53d 2ed7694 aacf53d 385b096 aacf53d 2ed7694 aacf53d 2ed7694 aacf53d 2ed7694 aacf53d 2ed7694 aacf53d 2ed7694 aacf53d 2ed7694 385b096 aacf53d 385b096 2ed7694 aacf53d 2ed7694 aacf53d 2ed7694 aacf53d 2ed7694 aacf53d 2ed7694 d75daa2 aacf53d d75daa2 aacf53d d75daa2 2ed7694 aacf53d d75daa2 aacf53d d75daa2 aacf53d d75daa2 2ed7694 aacf53d d75daa2 aacf53d d75daa2 aacf53d d75daa2 b9ebd64 d75daa2 2ed7694 aacf53d de5e4b0 2ed7694 aacf53d 2ed7694 b9ebd64 2ed7694 b9ebd64 2ed7694 b9ebd64 2ed7694 de5e4b0 2ed7694 de5e4b0 2ed7694 5df8f2d b9ebd64 2ed7694 385b096 5df8f2d 361485f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import gradio as gr
from huggingface_hub import InferenceClient
from typing import List, Dict, Optional, Union
import logging
from enum import Enum, auto
import torch
from transformers import AutoTokenizer, pipeline
import spaces
import concurrent.futures
import time
# ロガーの設定
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# モデルタイプの定義
LOCAL = "local"
INFERENCE_API = "api"
# モデル定義
TEXT_GENERATION_MODELS = [
{
"name": "Zephyr-7B",
"description": "Specialized in understanding context and nuance",
"type": INFERENCE_API,
"model_id": "HuggingFaceH4/zephyr-7b-beta"
},
{
"name": "Llama-2",
"description": "Known for its robust performance in content analysis",
"type": LOCAL,
"model_path": "meta-llama/Llama-2-7b-hf"
},
{
"name": "Mistral-7B",
"description": "Offers precise and detailed text evaluation",
"type": LOCAL,
"model_path": "mistralai/Mistral-7B-v0.1"
}
]
CLASSIFICATION_MODELS = [
{
"name": "Toxic-BERT",
"description": "Fine-tuned for toxic content detection",
"type": LOCAL,
"model_path": "unitary/toxic-bert"
}
]
# グローバル変数でモデルやトークナイザーを管理
tokenizers = {}
pipelines = {}
api_clients = {}
# インファレンスAPIクライアントの初期化
def initialize_api_clients():
"""Inference APIクライアントの初期化"""
for model in TEXT_GENERATION_MODELS + CLASSIFICATION_MODELS:
if model["type"] == INFERENCE_API and "model_id" in model:
logger.info(f"Initializing API client for {model['name']}")
api_clients[model["model_id"]] = InferenceClient(
model["model_id"],
token=True # これによりHFトークンを使用
)
logger.info("API clients initialized")
# ローカルモデルを事前ロード
def preload_local_models():
"""ローカルモデルを事前ロード"""
logger.info("Preloading local models at application startup...")
# テキスト生成モデル
for model in TEXT_GENERATION_MODELS:
if model["type"] == LOCAL and "model_path" in model:
model_path = model["model_path"]
try:
logger.info(f"Preloading text generation model: {model_path}")
tokenizers[model_path] = AutoTokenizer.from_pretrained(model_path)
pipelines[model_path] = pipeline(
"text-generation",
model=model_path,
tokenizer=tokenizers[model_path],
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
logger.info(f"Model preloaded successfully: {model_path}")
except Exception as e:
logger.error(f"Error preloading model {model_path}: {str(e)}")
# 分類モデル
for model in CLASSIFICATION_MODELS:
if model["type"] == LOCAL and "model_path" in model:
model_path = model["model_path"]
try:
logger.info(f"Preloading classification model: {model_path}")
tokenizers[model_path] = AutoTokenizer.from_pretrained(model_path)
pipelines[model_path] = pipeline(
"text-classification",
model=model_path,
tokenizer=tokenizers[model_path],
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
logger.info(f"Model preloaded successfully: {model_path}")
except Exception as e:
logger.error(f"Error preloading model {model_path}: {str(e)}")
@spaces.GPU
def generate_text_local(model_path, text):
"""ローカルモデルでのテキスト生成"""
try:
logger.info(f"Running local text generation with {model_path}")
outputs = pipelines[model_path](
text,
max_new_tokens=40,
do_sample=False,
num_return_sequences=1
)
return outputs[0]["generated_text"]
except Exception as e:
logger.error(f"Error in local text generation with {model_path}: {str(e)}")
return f"Error: {str(e)}"
def generate_text_api(model_id, text):
"""API経由でのテキスト生成"""
try:
logger.info(f"Running API text generation with {model_id}")
response = api_clients[model_id].text_generation(
text,
max_new_tokens=40,
temperature=0.7
)
return response
except Exception as e:
logger.error(f"Error in API text generation with {model_id}: {str(e)}")
return f"Error: {str(e)}"
@spaces.GPU
def classify_text_local(model_path, text):
"""ローカルモデルでのテキスト分類"""
try:
logger.info(f"Running local classification with {model_path}")
result = pipelines[model_path](text)
return str(result)
except Exception as e:
logger.error(f"Error in local classification with {model_path}: {str(e)}")
return f"Error: {str(e)}"
def classify_text_api(model_id, text):
"""API経由でのテキスト分類"""
try:
logger.info(f"Running API classification with {model_id}")
response = api_clients[model_id].text_classification(text)
return str(response)
except Exception as e:
logger.error(f"Error in API classification with {model_id}: {str(e)}")
return f"Error: {str(e)}"
@spaces.GPU
def parallel_text_generation(model_paths, texts):
"""複数のローカルモデルを一度のGPU割り当てで実行するための最適化関数"""
try:
logger.info(f"Running parallel text generation for {len(model_paths)} models")
results = {}
# 各モデルのパイプラインが既にロードされている前提で実行
for i, (model_path, text) in enumerate(zip(model_paths, texts)):
try:
logger.info(f"Processing model {i+1}/{len(model_paths)}: {model_path}")
outputs = pipelines[model_path](
text,
max_new_tokens=40,
do_sample=False,
num_return_sequences=1
)
results[model_path] = outputs[0]["generated_text"]
except Exception as e:
logger.error(f"Error in text generation with {model_path}: {str(e)}")
results[model_path] = f"Error: {str(e)}"
return results
except Exception as e:
logger.error(f"Error in parallel text generation: {str(e)}")
return {model_path: f"Error: {str(e)}" for model_path in model_paths}
@spaces.GPU
def parallel_text_classification(model_paths, texts):
"""複数のローカル分類モデルを一度のGPU割り当てで実行するための最適化関数"""
try:
logger.info(f"Running parallel text classification for {len(model_paths)} models")
results = {}
# 各モデルのパイプラインが既にロードされている前提で実行
for i, (model_path, text) in enumerate(zip(model_paths, texts)):
try:
logger.info(f"Processing classification model {i+1}/{len(model_paths)}: {model_path}")
result = pipelines[model_path](text)
results[model_path] = str(result)
except Exception as e:
logger.error(f"Error in classification with {model_path}: {str(e)}")
results[model_path] = f"Error: {str(e)}"
return results
except Exception as e:
logger.error(f"Error in parallel text classification: {str(e)}")
return {model_path: f"Error: {str(e)}" for model_path in model_paths}
# Invokeボタンのハンドラ
def handle_invoke(text, selected_types):
"""Invokeボタンのハンドラ - 並列処理版"""
start_time = time.time()
logger.info("Starting parallel model execution")
# 結果を格納する配列(順番を保持するため、最初に空の配列を作成)
results = [""] * (len(TEXT_GENERATION_MODELS) + len(CLASSIFICATION_MODELS))
# ローカルの生成モデルを一括処理するための準備
local_gen_models = []
local_gen_texts = []
local_gen_indices = []
# ローカルの分類モデルを一括処理するための準備
local_cls_models = []
local_cls_texts = []
local_cls_indices = []
# APIモデルとその他のタスク
api_tasks = []
# テキスト生成モデルの分類
for i, model in enumerate(TEXT_GENERATION_MODELS):
if model["type"] in selected_types:
if model["type"] == LOCAL:
local_gen_models.append(model["model_path"])
local_gen_texts.append(text)
local_gen_indices.append(i)
else: # api
api_tasks.append((i, model, "gen_api"))
# 分類モデルの分類
for i, model in enumerate(CLASSIFICATION_MODELS):
idx = i + len(TEXT_GENERATION_MODELS)
if model["type"] in selected_types:
if model["type"] == LOCAL:
local_cls_models.append(model["model_path"])
local_cls_texts.append(text)
local_cls_indices.append(idx)
else: # api
api_tasks.append((idx, model, "cls_api"))
# APIタスクを処理する関数
def process_api_task(task_data):
idx, model, task_type = task_data
try:
if task_type == "gen_api":
result = generate_text_api(model["model_id"], text)
return idx, f"{model['name']}: {result}"
elif task_type == "cls_api":
result = classify_text_api(model["model_id"], text)
return idx, f"{model['name']}: {result}"
except Exception as e:
logger.error(f"Error in {model['name']}: {str(e)}")
return idx, f"{model['name']}: Error - {str(e)}"
# API処理を並列実行
futures = []
if api_tasks:
with concurrent.futures.ThreadPoolExecutor(max_workers=len(api_tasks)) as executor:
futures = [executor.submit(process_api_task, task) for task in api_tasks]
# ローカル生成モデルを並列処理
if local_gen_models:
try:
local_gen_results = parallel_text_generation(local_gen_models, local_gen_texts)
for model_path, idx in zip(local_gen_models, local_gen_indices):
model_name = next(m["name"] for m in TEXT_GENERATION_MODELS if m["model_path"] == model_path)
results[idx] = f"{model_name}: {local_gen_results[model_path]}"
except Exception as e:
logger.error(f"Error in parallel text generation: {str(e)}")
for model_path, idx in zip(local_gen_models, local_gen_indices):
model_name = next(m["name"] for m in TEXT_GENERATION_MODELS if m["model_path"] == model_path)
results[idx] = f"{model_name}: Error - {str(e)}"
# ローカル分類モデルを並列処理
if local_cls_models:
try:
local_cls_results = parallel_text_classification(local_cls_models, local_cls_texts)
for model_path, idx in zip(local_cls_models, local_cls_indices):
model_name = next(m["name"] for m in CLASSIFICATION_MODELS if m["model_path"] == model_path)
results[idx] = f"{model_name}: {local_cls_results[model_path]}"
except Exception as e:
logger.error(f"Error in parallel text classification: {str(e)}")
for model_path, idx in zip(local_cls_models, local_cls_indices):
model_name = next(m["name"] for m in CLASSIFICATION_MODELS if m["model_path"] == model_path)
results[idx] = f"{model_name}: Error - {str(e)}"
# APIタスクの結果を収集
for future in concurrent.futures.as_completed(futures):
idx, result = future.result()
results[idx] = result
# 実行時間を記録
elapsed_time = time.time() - start_time
logger.info(f"Parallel model execution completed in {elapsed_time:.2f} seconds")
return results
# モデルの表示状態を更新
def update_model_visibility(selected_types):
"""モデルの表示状態を更新"""
logger.info(f"Updating visibility for types: {selected_types}")
updates = []
for model_outputs in [gen_model_outputs, class_model_outputs]:
for output in model_outputs:
visible = output["type"] in selected_types
logger.info(f"Model {output['name']} (type: {output['type']}): visible = {visible}")
updates.append(gr.update(visible=visible))
return updates
# モデルをロードしUIを更新する
def load_models_and_update_ui():
"""モデルをロードしUIを更新する"""
try:
# APIクライアント初期化
initialize_api_clients()
# モデルのロード
preload_local_models()
logger.info("Models loaded successfully")
# ロード完了メッセージを返して、UIのロード中表示を非表示にする
return gr.update(visible=False), gr.update(visible=True)
except Exception as e:
logger.error(f"Error loading models: {e}")
return gr.update(value=f"Error loading models: {e}"), gr.update(visible=False)
# モデルグリッドの作成
def create_model_grid(models):
"""モデルグリッドの作成"""
outputs = []
with gr.Column() as container:
for i in range(0, len(models), 2):
with gr.Row() as row:
for j in range(min(2, len(models) - i)):
model = models[i + j]
with gr.Column():
with gr.Group() as group:
gr.Markdown(f"### {model['name']}")
gr.Markdown(f"Type: {model['type']}")
output = gr.Textbox(
label="Model Output",
lines=5,
interactive=False,
info=model['description']
)
outputs.append({
"type": model["type"],
"name": model["name"],
"output": output,
"group": group
})
return outputs
# グローバル変数としてUI部品を保持
input_text = None
filter_checkboxes = None
invoke_button = None
gen_model_outputs = []
class_model_outputs = []
community_output = None
# UIの作成
def create_ui():
"""UIの作成"""
global input_text, filter_checkboxes, invoke_button, gen_model_outputs, class_model_outputs, community_output
with gr.Blocks() as demo:
# ロード中コンポーネント
with gr.Group(visible=True) as loading_group:
gr.Markdown("""
# Toxic Eye
### Loading models... This may take a few minutes.
The application is initializing and preloading all models.
Please wait while the models are being loaded...
""")
# メインUIコンポーネント(初期状態では非表示)
with gr.Group(visible=False) as main_ui_group:
# ヘッダー
gr.Markdown("""
# Toxic Eye
This system evaluates the toxicity level of input text using multiple approaches.
""")
# 入力セクション
with gr.Row():
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter text to analyze...",
lines=3
)
# フィルターセクション
with gr.Row():
filter_checkboxes = gr.CheckboxGroup(
choices=[LOCAL, INFERENCE_API],
value=[LOCAL, INFERENCE_API],
label="Filter Models",
info="Choose which types of models to display",
interactive=True
)
# Invokeボタン
with gr.Row():
invoke_button = gr.Button(
"Invoke Selected Models",
variant="primary",
size="lg"
)
# モデルタブ
with gr.Tabs():
with gr.Tab("Text Generation LLM"):
gen_model_outputs = create_model_grid(TEXT_GENERATION_MODELS)
with gr.Tab("Classification LLM"):
class_model_outputs = create_model_grid(CLASSIFICATION_MODELS)
with gr.Tab("Community (Not implemented)"):
with gr.Column():
community_output = gr.Textbox(
label="Related Community Topics",
lines=5,
interactive=False
)
# イベントハンドラの設定
filter_checkboxes.change(
fn=update_model_visibility,
inputs=[filter_checkboxes],
outputs=[
output["group"]
for outputs in [gen_model_outputs, class_model_outputs]
for output in outputs
]
)
invoke_button.click(
fn=handle_invoke,
inputs=[input_text, filter_checkboxes],
outputs=[
output["output"]
for outputs in [gen_model_outputs, class_model_outputs]
for output in outputs
]
)
# 起動時にモデルロード処理を実行
demo.load(
fn=load_models_and_update_ui,
inputs=None,
outputs=[loading_group, main_ui_group]
)
return demo
# メイン関数
def main():
logger.info("Starting Toxic Eye application")
demo = create_ui()
demo.launch()
if __name__ == "__main__":
main() |