- .gitignore +60 -0
- README.md +66 -1
- app.py +361 -59
- requirements.txt +7 -1
.gitignore
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Environment variables
|
2 |
+
.env
|
3 |
+
|
4 |
+
# Pipenv files
|
5 |
+
Pipfile
|
6 |
+
Pipfile.lock
|
7 |
+
|
8 |
+
# Python
|
9 |
+
__pycache__/
|
10 |
+
*.py[cod]
|
11 |
+
*$py.class
|
12 |
+
*.so
|
13 |
+
.Python
|
14 |
+
build/
|
15 |
+
develop-eggs/
|
16 |
+
dist/
|
17 |
+
downloads/
|
18 |
+
eggs/
|
19 |
+
.eggs/
|
20 |
+
lib/
|
21 |
+
lib64/
|
22 |
+
parts/
|
23 |
+
sdist/
|
24 |
+
var/
|
25 |
+
wheels/
|
26 |
+
*.egg-info/
|
27 |
+
.installed.cfg
|
28 |
+
*.egg
|
29 |
+
|
30 |
+
# Virtual Environment
|
31 |
+
.env
|
32 |
+
.venv
|
33 |
+
env/
|
34 |
+
venv/
|
35 |
+
ENV/
|
36 |
+
env.bak/
|
37 |
+
venv.bak/
|
38 |
+
|
39 |
+
# IDE
|
40 |
+
.idea/
|
41 |
+
.vscode/
|
42 |
+
*.swp
|
43 |
+
*.swo
|
44 |
+
.DS_Store
|
45 |
+
|
46 |
+
# Jupyter Notebook
|
47 |
+
.ipynb_checkpoints
|
48 |
+
|
49 |
+
# Model files and cache
|
50 |
+
*.pt
|
51 |
+
*.pth
|
52 |
+
*.bin
|
53 |
+
.cache/
|
54 |
+
*.ckpt
|
55 |
+
transformers_cache/
|
56 |
+
torch_cache/
|
57 |
+
|
58 |
+
# Logs
|
59 |
+
*.log
|
60 |
+
logs/
|
README.md
CHANGED
@@ -9,4 +9,69 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# Toxic Total: Multi-Model Toxicity Evaluation Platform
|
13 |
+
|
14 |
+
## Overview
|
15 |
+
Toxic Total is a comprehensive platform that evaluates text toxicity using multiple language models and classifiers. This platform provides a unique approach by combining both generative and classification models to analyze potentially toxic content.
|
16 |
+
|
17 |
+
## Features
|
18 |
+
|
19 |
+
### 1. Text Generation Models
|
20 |
+
Our platform utilizes four state-of-the-art language models:
|
21 |
+
- **Zephyr-7B**: Specialized in understanding context and nuance
|
22 |
+
- **Llama-2**: Known for its robust performance in content analysis
|
23 |
+
- **Mistral-7B**: Offers precise and detailed text evaluation
|
24 |
+
- **Claude-2**: Provides comprehensive toxicity assessment
|
25 |
+
|
26 |
+
### 2. Classification Models
|
27 |
+
We employ four specialized classification models:
|
28 |
+
- **Toxic-BERT**: Fine-tuned for toxic content detection
|
29 |
+
- **RoBERTa-Toxic**: Advanced toxic pattern recognition
|
30 |
+
- **DistilBERT-Toxic**: Efficient toxicity classification
|
31 |
+
- **XLM-RoBERTa-Toxic**: Multilingual toxicity detection
|
32 |
+
|
33 |
+
### 3. Community Integration
|
34 |
+
Access to community insights and discussions about similar content patterns and toxicity analysis.
|
35 |
+
|
36 |
+
## Technical Details
|
37 |
+
|
38 |
+
### Model Architecture
|
39 |
+
Each model in our platform is carefully selected to provide complementary analysis:
|
40 |
+
```python
|
41 |
+
def analyze_toxicity(text):
|
42 |
+
# Multiple model evaluation
|
43 |
+
llm_results = text_generation_models(text)
|
44 |
+
classification_results = toxicity_classifiers(text)
|
45 |
+
community_insights = fetch_community_data(text)
|
46 |
+
return combined_analysis(llm_results, classification_results, community_insights)
|
47 |
+
```
|
48 |
+
|
49 |
+
### Performance Considerations
|
50 |
+
- Real-time analysis capabilities
|
51 |
+
- Efficient multi-model parallel processing
|
52 |
+
- Optimized response generation
|
53 |
+
|
54 |
+
## Usage Guidelines
|
55 |
+
|
56 |
+
1. Enter the text you want to analyze in the input box
|
57 |
+
2. Review results from multiple models
|
58 |
+
3. Compare different model perspectives
|
59 |
+
4. Check community insights for context
|
60 |
+
|
61 |
+
## References
|
62 |
+
|
63 |
+
- [Hugging Face Models](https://huggingface.co/models)
|
64 |
+
- [Toxicity Classification Research](https://arxiv.org/abs/2103.00153)
|
65 |
+
- [Language Model Evaluation Methods](https://arxiv.org/abs/2009.07118)
|
66 |
+
|
67 |
+
## Citation
|
68 |
+
|
69 |
+
If you use this platform in your research, please cite:
|
70 |
+
```bibtex
|
71 |
+
@software{toxic_total,
|
72 |
+
title = {Toxic Total: Multi-Model Toxicity Evaluation Platform},
|
73 |
+
year = {2024},
|
74 |
+
publisher = {Hugging Face},
|
75 |
+
url = {https://huggingface.co/spaces/[your-username]/toxic-total}
|
76 |
+
}
|
77 |
+
```
|
app.py
CHANGED
@@ -1,64 +1,366 @@
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
|
|
61 |
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
demo.launch()
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import AsyncInferenceClient
|
3 |
+
from typing import List, Dict, Optional, Union
|
4 |
+
import logging
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from enum import Enum, auto
|
7 |
+
import torch
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification, pipeline
|
9 |
+
import spaces
|
10 |
+
|
11 |
+
# ロガーの設定
|
12 |
+
logging.basicConfig(
|
13 |
+
level=logging.INFO,
|
14 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
)
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
|
18 |
+
# モデルの型定義
|
19 |
+
class ModelType(Enum):
|
20 |
+
LOCAL = "local"
|
21 |
+
INFERENCE_API = "inference_api"
|
22 |
|
23 |
+
@dataclass
|
24 |
+
class ModelConfig:
|
25 |
+
name: str
|
26 |
+
description: str
|
27 |
+
type: ModelType
|
28 |
+
model_id: Optional[str] = None
|
29 |
+
model_path: Optional[str] = None
|
30 |
+
|
31 |
+
# モデル定義を拡充
|
32 |
+
TEXT_GENERATION_MODELS = [
|
33 |
+
ModelConfig(
|
34 |
+
name="Zephyr-7B",
|
35 |
+
description="Specialized in understanding context and nuance",
|
36 |
+
type=ModelType.INFERENCE_API,
|
37 |
+
model_id="HuggingFaceH4/zephyr-7b-beta"
|
38 |
+
),
|
39 |
+
ModelConfig(
|
40 |
+
name="Llama-2",
|
41 |
+
description="Known for its robust performance in content analysis",
|
42 |
+
type=ModelType.LOCAL,
|
43 |
+
model_path="meta-llama/Llama-2-7b-hf"
|
44 |
+
),
|
45 |
+
ModelConfig(
|
46 |
+
name="Mistral-7B",
|
47 |
+
description="Offers precise and detailed text evaluation",
|
48 |
+
type=ModelType.LOCAL,
|
49 |
+
model_path="mistralai/Mistral-7B-v0.1"
|
50 |
+
),
|
51 |
+
ModelConfig(
|
52 |
+
name="Claude-2",
|
53 |
+
description="Provides comprehensive toxicity assessment",
|
54 |
+
type=ModelType.INFERENCE_API,
|
55 |
+
model_id="anthropic/claude-2"
|
56 |
+
)
|
57 |
+
]
|
58 |
+
|
59 |
+
CLASSIFICATION_MODELS = [
|
60 |
+
ModelConfig(
|
61 |
+
name="Toxic-BERT",
|
62 |
+
description="Fine-tuned for toxic content detection",
|
63 |
+
type=ModelType.LOCAL,
|
64 |
+
model_path="unitary/toxic-bert"
|
65 |
+
),
|
66 |
+
ModelConfig(
|
67 |
+
name="RoBERTa-Toxic",
|
68 |
+
description="Advanced toxic pattern recognition",
|
69 |
+
type=ModelType.INFERENCE_API,
|
70 |
+
model_id="unitary/multilingual-toxic-xlm-roberta"
|
71 |
+
),
|
72 |
+
ModelConfig(
|
73 |
+
name="DistilBERT-Toxic",
|
74 |
+
description="Efficient toxicity classification",
|
75 |
+
type=ModelType.LOCAL,
|
76 |
+
model_path="unitary/multilingual-toxic-distilbert"
|
77 |
+
),
|
78 |
+
ModelConfig(
|
79 |
+
name="XLM-RoBERTa-Toxic",
|
80 |
+
description="Multilingual toxicity detection",
|
81 |
+
type=ModelType.INFERENCE_API,
|
82 |
+
model_id="unitary/multilingual-toxic-xlm-roberta"
|
83 |
+
)
|
84 |
+
]
|
85 |
+
|
86 |
+
class LocalModelManager:
|
87 |
+
def __init__(self):
|
88 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
89 |
+
logger.info(f"Using device: {self.device}")
|
90 |
+
self.models = {}
|
91 |
+
self.tokenizers = {}
|
92 |
+
self.pipelines = {}
|
93 |
+
|
94 |
+
async def load_model(self, model_path: str, task: str = "text-generation"):
|
95 |
+
"""モデルの遅延ロード"""
|
96 |
+
if model_path not in self.models:
|
97 |
+
logger.info(f"Loading model: {model_path}")
|
98 |
+
try:
|
99 |
+
self.tokenizers[model_path] = AutoTokenizer.from_pretrained(model_path)
|
100 |
+
|
101 |
+
if task == "text-generation":
|
102 |
+
model = AutoModelForCausalLM.from_pretrained(
|
103 |
+
model_path,
|
104 |
+
torch_dtype=torch.float16,
|
105 |
+
device_map="auto"
|
106 |
+
)
|
107 |
+
self.pipelines[model_path] = pipeline(
|
108 |
+
"text-generation",
|
109 |
+
model=model,
|
110 |
+
tokenizer=self.tokenizers[model_path]
|
111 |
+
)
|
112 |
+
else: # classification
|
113 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
114 |
+
model_path,
|
115 |
+
device_map="auto"
|
116 |
+
)
|
117 |
+
self.pipelines[model_path] = pipeline(
|
118 |
+
"text-classification",
|
119 |
+
model=model,
|
120 |
+
tokenizer=self.tokenizers[model_path]
|
121 |
+
)
|
122 |
+
|
123 |
+
self.models[model_path] = model
|
124 |
+
logger.info(f"Model loaded successfully: {model_path}")
|
125 |
+
except Exception as e:
|
126 |
+
logger.error(f"Error loading model {model_path}: {str(e)}")
|
127 |
+
raise
|
128 |
+
|
129 |
+
@spaces.GPU(duration=120) # GPUを120秒間確保
|
130 |
+
async def generate_text(self, model_path: str, text: str) -> str:
|
131 |
+
"""テキスト生成の実行"""
|
132 |
+
if model_path not in self.models:
|
133 |
+
await self.load_model(model_path, "text-generation")
|
134 |
+
|
135 |
+
try:
|
136 |
+
outputs = self.pipelines[model_path](
|
137 |
+
text,
|
138 |
+
max_new_tokens=100,
|
139 |
+
do_sample=True,
|
140 |
+
temperature=0.7,
|
141 |
+
top_p=0.9,
|
142 |
+
num_return_sequences=1
|
143 |
+
)
|
144 |
+
return outputs[0]["generated_text"]
|
145 |
+
except Exception as e:
|
146 |
+
logger.error(f"Error in text generation with {model_path}: {str(e)}")
|
147 |
+
raise
|
148 |
+
|
149 |
+
@spaces.GPU(duration=60) # GPUを60秒間確保
|
150 |
+
async def classify_text(self, model_path: str, text: str) -> str:
|
151 |
+
"""テキスト分類の実行"""
|
152 |
+
if model_path not in self.models:
|
153 |
+
await self.load_model(model_path, "text-classification")
|
154 |
+
|
155 |
+
try:
|
156 |
+
result = self.pipelines[model_path](text)
|
157 |
+
return str(result)
|
158 |
+
except Exception as e:
|
159 |
+
logger.error(f"Error in classification with {model_path}: {str(e)}")
|
160 |
+
raise
|
161 |
+
|
162 |
+
class ModelManager:
|
163 |
+
def __init__(self):
|
164 |
+
self.api_clients = {}
|
165 |
+
self.local_manager = LocalModelManager()
|
166 |
+
self._initialize_clients()
|
167 |
+
|
168 |
+
def _initialize_clients(self):
|
169 |
+
"""Inference APIクライアントの初期化"""
|
170 |
+
for model in TEXT_GENERATION_MODELS + CLASSIFICATION_MODELS:
|
171 |
+
if model.type == ModelType.INFERENCE_API and model.model_id:
|
172 |
+
self.api_clients[model.model_id] = AsyncInferenceClient(model.model_id)
|
173 |
+
|
174 |
+
async def run_text_generation(self, text: str, selected_types: List[str]) -> List[str]:
|
175 |
+
"""テキスト生成モデルの実行"""
|
176 |
+
results = []
|
177 |
+
for model in TEXT_GENERATION_MODELS:
|
178 |
+
if model.type.value in selected_types:
|
179 |
+
try:
|
180 |
+
if model.type == ModelType.INFERENCE_API:
|
181 |
+
logger.info(f"Running API text generation: {model.name}")
|
182 |
+
response = await self.api_clients[model.model_id].text_generation(
|
183 |
+
text, max_new_tokens=100, temperature=0.7
|
184 |
+
)
|
185 |
+
results.append(f"{model.name}: {response}")
|
186 |
+
else:
|
187 |
+
logger.info(f"Running local text generation: {model.name}")
|
188 |
+
response = await self.local_manager.generate_text(model.model_path, text)
|
189 |
+
results.append(f"{model.name}: {response}")
|
190 |
+
except Exception as e:
|
191 |
+
logger.error(f"Error in {model.name}: {str(e)}")
|
192 |
+
results.append(f"{model.name}: Error - {str(e)}")
|
193 |
+
return results
|
194 |
+
|
195 |
+
async def run_classification(self, text: str, selected_types: List[str]) -> List[str]:
|
196 |
+
"""分類モデルの実行"""
|
197 |
+
results = []
|
198 |
+
for model in CLASSIFICATION_MODELS:
|
199 |
+
if model.type.value in selected_types:
|
200 |
+
try:
|
201 |
+
if model.type == ModelType.INFERENCE_API:
|
202 |
+
logger.info(f"Running API classification: {model.name}")
|
203 |
+
response = await self.api_clients[model.model_id].text_classification(text)
|
204 |
+
results.append(f"{model.name}: {response}")
|
205 |
+
else:
|
206 |
+
logger.info(f"Running local classification: {model.name}")
|
207 |
+
response = await self.local_manager.classify_text(model.model_path, text)
|
208 |
+
results.append(f"{model.name}: {response}")
|
209 |
+
except Exception as e:
|
210 |
+
logger.error(f"Error in {model.name}: {str(e)}")
|
211 |
+
results.append(f"{model.name}: Error - {str(e)}")
|
212 |
+
return results
|
213 |
+
|
214 |
+
class UIComponents:
|
215 |
+
def __init__(self):
|
216 |
+
self.input_text = None
|
217 |
+
self.filter_checkboxes = None
|
218 |
+
self.invoke_button = None
|
219 |
+
self.gen_model_outputs = []
|
220 |
+
self.class_model_outputs = []
|
221 |
+
self.community_output = None
|
222 |
+
|
223 |
+
def create_header(self):
|
224 |
+
"""ヘッダーセクションの作成"""
|
225 |
+
return gr.Markdown("""
|
226 |
+
# Toxic Total
|
227 |
+
This system evaluates the toxicity level of input text using multiple approaches.
|
228 |
+
""")
|
229 |
+
|
230 |
+
def create_input_section(self):
|
231 |
+
"""入力セクションの作成"""
|
232 |
+
with gr.Row():
|
233 |
+
self.input_text = gr.Textbox(
|
234 |
+
label="Input Text",
|
235 |
+
placeholder="Enter text to analyze...",
|
236 |
+
lines=3
|
237 |
+
)
|
238 |
+
|
239 |
+
def create_filter_section(self):
|
240 |
+
"""フィルターセクションの作成"""
|
241 |
+
with gr.Row():
|
242 |
+
self.filter_checkboxes = gr.CheckboxGroup(
|
243 |
+
choices=[t.value for t in ModelType],
|
244 |
+
value=[t.value for t in ModelType],
|
245 |
+
label="Filter Models",
|
246 |
+
info="Choose which types of models to display",
|
247 |
+
interactive=True
|
248 |
+
)
|
249 |
+
|
250 |
+
def create_invoke_button(self):
|
251 |
+
"""Invokeボタンの作成"""
|
252 |
+
with gr.Row():
|
253 |
+
self.invoke_button = gr.Button(
|
254 |
+
"Invoke Selected Models",
|
255 |
+
variant="primary",
|
256 |
+
size="lg"
|
257 |
+
)
|
258 |
+
|
259 |
+
def create_model_grid(self, models: List[ModelConfig]) -> List[Dict]:
|
260 |
+
"""モデルグリッドの作成"""
|
261 |
+
outputs = []
|
262 |
+
with gr.Column() as container:
|
263 |
+
for i in range(0, len(models), 2):
|
264 |
+
with gr.Row() as row:
|
265 |
+
for j in range(min(2, len(models) - i)):
|
266 |
+
model = models[i + j]
|
267 |
+
with gr.Column():
|
268 |
+
with gr.Group() as group:
|
269 |
+
gr.Markdown(f"### {model.name}")
|
270 |
+
gr.Markdown(f"Type: {model.type.value}")
|
271 |
+
output = gr.Textbox(
|
272 |
+
label="Model Output",
|
273 |
+
lines=5,
|
274 |
+
interactive=False,
|
275 |
+
info=model.description
|
276 |
+
)
|
277 |
+
outputs.append({
|
278 |
+
"type": model.type.value,
|
279 |
+
"name": model.name,
|
280 |
+
"output": output,
|
281 |
+
"group": group
|
282 |
+
})
|
283 |
+
return outputs
|
284 |
+
|
285 |
+
def create_model_tabs(self):
|
286 |
+
"""モデルタブの作成"""
|
287 |
+
with gr.Tabs():
|
288 |
+
with gr.Tab("Text Generation LLM"):
|
289 |
+
self.gen_model_outputs = self.create_model_grid(TEXT_GENERATION_MODELS)
|
290 |
+
with gr.Tab("Classification LLM"):
|
291 |
+
self.class_model_outputs = self.create_model_grid(CLASSIFICATION_MODELS)
|
292 |
+
with gr.Tab("Community (Not implemented)"):
|
293 |
+
with gr.Column():
|
294 |
+
self.community_output = gr.Textbox(
|
295 |
+
label="Related Community Topics",
|
296 |
+
lines=5,
|
297 |
+
interactive=False
|
298 |
+
)
|
299 |
+
|
300 |
+
class ToxicityApp:
|
301 |
+
def __init__(self):
|
302 |
+
self.ui = UIComponents()
|
303 |
+
self.model_manager = ModelManager()
|
304 |
+
|
305 |
+
def update_model_visibility(self, selected_types: List[str]) -> List[gr.update]:
|
306 |
+
"""モデルの表示状態を更新"""
|
307 |
+
logger.info(f"Updating visibility for types: {selected_types}")
|
308 |
+
|
309 |
+
updates = []
|
310 |
+
for outputs in [self.ui.gen_model_outputs, self.ui.class_model_outputs]:
|
311 |
+
for output in outputs:
|
312 |
+
visible = output["type"] in selected_types
|
313 |
+
logger.info(f"Model {output['name']} (type: {output['type']}): visible = {visible}")
|
314 |
+
updates.append(gr.update(visible=visible))
|
315 |
+
return updates
|
316 |
+
|
317 |
+
async def handle_invoke(self, text: str, selected_types: List[str]) -> List[str]:
|
318 |
+
"""Invokeボタンのハンドラ"""
|
319 |
+
gen_results = await self.model_manager.run_text_generation(text, selected_types)
|
320 |
+
class_results = await self.model_manager.run_classification(text, selected_types)
|
321 |
+
|
322 |
+
# 結果リストの長さを調整
|
323 |
+
gen_results.extend([""] * (len(TEXT_GENERATION_MODELS) - len(gen_results)))
|
324 |
+
class_results.extend([""] * (len(CLASSIFICATION_MODELS) - len(class_results)))
|
325 |
+
|
326 |
+
return gen_results + class_results
|
327 |
+
|
328 |
+
def create_ui(self):
|
329 |
+
"""UIの作成"""
|
330 |
+
with gr.Blocks() as demo:
|
331 |
+
self.ui.create_header()
|
332 |
+
self.ui.create_input_section()
|
333 |
+
self.ui.create_filter_section()
|
334 |
+
self.ui.create_invoke_button()
|
335 |
+
self.ui.create_model_tabs()
|
336 |
+
|
337 |
+
# イベントハンドラの設定
|
338 |
+
self.ui.filter_checkboxes.change(
|
339 |
+
fn=self.update_model_visibility,
|
340 |
+
inputs=[self.ui.filter_checkboxes],
|
341 |
+
outputs=[
|
342 |
+
output["group"]
|
343 |
+
for outputs in [self.ui.gen_model_outputs, self.ui.class_model_outputs]
|
344 |
+
for output in outputs
|
345 |
+
]
|
346 |
+
)
|
347 |
+
|
348 |
+
self.ui.invoke_button.click(
|
349 |
+
fn=self.handle_invoke,
|
350 |
+
inputs=[self.ui.input_text, self.ui.filter_checkboxes],
|
351 |
+
outputs=[
|
352 |
+
output["output"]
|
353 |
+
for outputs in [self.ui.gen_model_outputs, self.ui.class_model_outputs]
|
354 |
+
for output in outputs
|
355 |
+
]
|
356 |
+
)
|
357 |
+
|
358 |
+
return demo
|
359 |
+
|
360 |
+
def main():
|
361 |
+
app = ToxicityApp()
|
362 |
+
demo = app.create_ui()
|
363 |
demo.launch()
|
364 |
+
|
365 |
+
if __name__ == "__main__":
|
366 |
+
main()
|
requirements.txt
CHANGED
@@ -1 +1,7 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
huggingface_hub
|
3 |
+
transformers
|
4 |
+
torch
|
5 |
+
accelerate
|
6 |
+
aiohttp
|
7 |
+
spaces
|