ntam0001's picture
Update app.py
8b11118 verified
raw
history blame
10.1 kB
import gradio as gr
import pandas as pd
import numpy as np
import pickle
import json
import tensorflow as tf
from tensorflow.keras.models import load_model, model_from_json
import plotly.graph_objects as go
import os
# Set environment variable to avoid oneDNN warnings
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
# Load model artifacts
def load_model_artifacts():
try:
# Load model architecture first
with open('model_architecture.json', 'r') as json_file:
model_json = json_file.read()
model = model_from_json(model_json)
# Then load weights
model.load_weights('best_model.h5')
# Load the scaler
with open('scaler.pkl', 'rb') as f:
scaler = pickle.load(f)
# Load metadata
with open('metadata.json', 'r') as f:
metadata = json.load(f)
return model, scaler, metadata
except Exception as e:
raise Exception(f"Error loading model artifacts: {str(e)}")
# Initialize model components
try:
model, scaler, metadata = load_model_artifacts()
feature_names = metadata['feature_names']
print(f"βœ… Model loaded successfully with features: {feature_names}")
except Exception as e:
print(f"❌ Error loading model: {e}")
# Fallback values for testing
model, scaler, metadata = None, None, {}
feature_names = ['Feature_1', 'Feature_2', 'Feature_3', 'Feature_4']
def predict_student_eligibility(*args):
"""Predict student eligibility based on input features"""
try:
if model is None or scaler is None:
return "Model not loaded", "N/A", "N/A", create_error_plot()
# Create input dictionary from gradio inputs
input_data = {feature_names[i]: args[i] for i in range(len(feature_names))}
# Convert to DataFrame
input_df = pd.DataFrame([input_data])
# Scale the input
input_scaled = scaler.transform(input_df)
# Reshape for CNN
input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1)
# Make prediction
probability = float(model.predict(input_reshaped)[0][0])
prediction = "Eligible" if probability > 0.5 else "Not Eligible"
confidence = abs(probability - 0.5) * 2 # Convert to confidence score
# Create prediction visualization
fig = create_prediction_viz(probability, prediction, input_data)
return prediction, f"{probability:.4f}", f"{confidence:.4f}", fig
except Exception as e:
return f"Error: {str(e)}", "N/A", "N/A", create_error_plot()
def create_error_plot():
"""Create a simple error plot"""
fig = go.Figure()
fig.add_annotation(
text="Model not available or error occurred",
xref="paper", yref="paper",
x=0.5, y=0.5, xanchor='center', yanchor='middle',
showarrow=False, font=dict(size=20)
)
fig.update_layout(
xaxis={'visible': False},
yaxis={'visible': False},
height=400
)
return fig
def create_prediction_viz(probability, prediction, input_data):
"""Create visualization for prediction results"""
try:
# Create subplots
fig = make_subplots(
rows=2, cols=2,
subplot_titles=('Prediction Probability', 'Confidence Meter', 'Input Features', 'Probability Distribution'),
specs=[[{"type": "indicator"}, {"type": "indicator"}],
[{"type": "bar"}, {"type": "scatter"}]]
)
# Prediction probability gauge
fig.add_trace(
go.Indicator(
mode="gauge+number",
value=probability,
domain={'x': [0, 1], 'y': [0, 1]},
title={'text': "Eligibility Probability"},
gauge={
'axis': {'range': [None, 1]},
'bar': {'color': "darkblue"},
'steps': [
{'range': [0, 0.5], 'color': "lightcoral"},
{'range': [0.5, 1], 'color': "lightgreen"}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': 0.5
}
}
),
row=1, col=1
)
# Confidence meter
confidence = abs(probability - 0.5) * 2
fig.add_trace(
go.Indicator(
mode="gauge+number",
value=confidence,
domain={'x': [0, 1], 'y': [0, 1]},
title={'text': "Prediction Confidence"},
gauge={
'axis': {'range': [None, 1]},
'bar': {'color': "orange"},
'steps': [
{'range': [0, 0.3], 'color': "lightcoral"},
{'range': [0.3, 0.7], 'color': "lightyellow"},
{'range': [0.7, 1], 'color': "lightgreen"}
]
}
),
row=1, col=2
)
# Input features bar chart
features = list(input_data.keys())
values = list(input_data.values())
fig.add_trace(
go.Bar(x=features, y=values, name="Input Values", marker_color="skyblue"),
row=2, col=1
)
# Simple probability visualization
fig.add_trace(
go.Scatter(
x=[0, 1],
y=[probability, probability],
mode='lines+markers',
name="Probability",
line=dict(color="red", width=3),
marker=dict(size=10)
),
row=2, col=2
)
fig.update_layout(
height=800,
showlegend=False,
title_text="Student Eligibility Prediction Dashboard",
title_x=0.5
)
return fig
except Exception as e:
return create_error_plot()
def batch_predict(file):
"""Batch prediction from uploaded CSV file"""
try:
if model is None or scaler is None:
return "Model not loaded. Please check if all model files are uploaded.", None
if file is None:
return "Please upload a CSV file.", None
# Read the uploaded file
df = pd.read_csv(file)
# Check if all required features are present
missing_features = set(feature_names) - set(df.columns)
if missing_features:
return f"Missing features: {missing_features}", None
# Select only the required features
df_features = df[feature_names]
# Scale the features
df_scaled = scaler.transform(df_features)
# Reshape for CNN
df_reshaped = df_scaled.reshape(df_scaled.shape[0], df_scaled.shape[1], 1)
# Make predictions
probabilities = model.predict(df_reshaped).flatten()
predictions = ["Eligible" if p > 0.5 else "Not Eligible" for p in probabilities]
# Create results dataframe
results_df = df_features.copy()
results_df['Probability'] = probabilities
results_df['Prediction'] = predictions
results_df['Confidence'] = np.abs(probabilities - 0.5) * 2
# Save results
output_file = "batch_predictions.csv"
results_df.to_csv(output_file, index=False)
# Create summary statistics
eligible_count = sum(1 for p in predictions if p == 'Eligible')
not_eligible_count = len(predictions) - eligible_count
summary = f"""Batch Prediction Summary:
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
πŸ“Š Total predictions: {len(results_df)}
βœ… Eligible: {eligible_count} ({eligible_count/len(predictions)*100:.1f}%)
❌ Not Eligible: {not_eligible_count} ({not_eligible_count/len(predictions)*100:.1f}%)
πŸ“ˆ Average Probability: {np.mean(probabilities):.4f}
🎯 Average Confidence: {np.mean(np.abs(probabilities - 0.5) * 2):.4f}
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Results saved to: {output_file}
"""
return summary, output_file
except Exception as e:
return f"Error processing file: {str(e)}", None
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸŽ“ Student Eligibility Prediction")
with gr.Tabs():
with gr.Tab("Single Prediction"):
inputs = []
for feature in feature_names:
inputs.append(gr.Number(label=feature, value=75))
predict_btn = gr.Button("Predict")
with gr.Row():
prediction = gr.Textbox(label="Prediction")
probability = gr.Textbox(label="Probability")
confidence = gr.Textbox(label="Confidence")
plot = gr.Plot()
predict_btn.click(
predict_student_eligibility,
inputs=inputs,
outputs=[prediction, probability, confidence, plot]
)
with gr.Tab("Batch Prediction"):
file_input = gr.File(
label="Upload CSV",
file_types=[".csv"],
type="filepath" # Fixed: Changed from 'file' to 'filepath'
)
batch_btn = gr.Button("Process Batch")
batch_output = gr.Textbox(label="Results")
download = gr.File(label="Download")
batch_btn.click(
batch_predict,
inputs=file_input,
outputs=[batch_output, download]
)
demo.launch()