File size: 10,071 Bytes
444ee18
 
 
 
 
 
8b11118
444ee18
 
 
8b11118
 
 
444ee18
 
 
8b11118
 
 
 
 
 
 
444ee18
 
 
 
 
 
 
 
 
 
 
 
 
 
ed024cc
 
 
 
 
 
 
 
 
444ee18
 
8b11118
444ee18
ed024cc
 
 
444ee18
 
 
 
 
 
 
 
 
 
 
 
 
ed024cc
444ee18
 
 
 
 
 
 
 
 
ed024cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444ee18
 
8b11118
ed024cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444ee18
ed024cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444ee18
 
8b11118
444ee18
ed024cc
 
 
 
 
 
444ee18
8b11118
444ee18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed024cc
 
 
 
 
 
 
 
 
 
 
 
 
444ee18
 
 
 
 
 
 
 
8b11118
 
444ee18
 
8b11118
 
 
 
ed024cc
8b11118
444ee18
 
8b11118
 
 
444ee18
8b11118
ed024cc
8b11118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444ee18
8b11118
 
 
 
 
444ee18
8b11118
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import gradio as gr
import pandas as pd
import numpy as np
import pickle
import json
import tensorflow as tf
from tensorflow.keras.models import load_model, model_from_json
import plotly.graph_objects as go
import os

# Set environment variable to avoid oneDNN warnings
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'

# Load model artifacts
def load_model_artifacts():
    try:
        # Load model architecture first
        with open('model_architecture.json', 'r') as json_file:
            model_json = json_file.read()
        model = model_from_json(model_json)
        
        # Then load weights
        model.load_weights('best_model.h5')
        
        # Load the scaler
        with open('scaler.pkl', 'rb') as f:
            scaler = pickle.load(f)
        
        # Load metadata
        with open('metadata.json', 'r') as f:
            metadata = json.load(f)
            
        return model, scaler, metadata
    except Exception as e:
        raise Exception(f"Error loading model artifacts: {str(e)}")

# Initialize model components
try:
    model, scaler, metadata = load_model_artifacts()
    feature_names = metadata['feature_names']
    print(f"βœ… Model loaded successfully with features: {feature_names}")
except Exception as e:
    print(f"❌ Error loading model: {e}")
    # Fallback values for testing
    model, scaler, metadata = None, None, {}
    feature_names = ['Feature_1', 'Feature_2', 'Feature_3', 'Feature_4']

def predict_student_eligibility(*args):
    """Predict student eligibility based on input features"""
    try:
        if model is None or scaler is None:
            return "Model not loaded", "N/A", "N/A", create_error_plot()
        
        # Create input dictionary from gradio inputs
        input_data = {feature_names[i]: args[i] for i in range(len(feature_names))}
        
        # Convert to DataFrame
        input_df = pd.DataFrame([input_data])
        
        # Scale the input
        input_scaled = scaler.transform(input_df)
        
        # Reshape for CNN
        input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1)
        
        # Make prediction
        probability = float(model.predict(input_reshaped)[0][0])
        prediction = "Eligible" if probability > 0.5 else "Not Eligible"
        confidence = abs(probability - 0.5) * 2  # Convert to confidence score
        
        # Create prediction visualization
        fig = create_prediction_viz(probability, prediction, input_data)
        
        return prediction, f"{probability:.4f}", f"{confidence:.4f}", fig
        
    except Exception as e:
        return f"Error: {str(e)}", "N/A", "N/A", create_error_plot()

def create_error_plot():
    """Create a simple error plot"""
    fig = go.Figure()
    fig.add_annotation(
        text="Model not available or error occurred",
        xref="paper", yref="paper",
        x=0.5, y=0.5, xanchor='center', yanchor='middle',
        showarrow=False, font=dict(size=20)
    )
    fig.update_layout(
        xaxis={'visible': False},
        yaxis={'visible': False},
        height=400
    )
    return fig

def create_prediction_viz(probability, prediction, input_data):
    """Create visualization for prediction results"""
    try:
        # Create subplots
        fig = make_subplots(
            rows=2, cols=2,
            subplot_titles=('Prediction Probability', 'Confidence Meter', 'Input Features', 'Probability Distribution'),
            specs=[[{"type": "indicator"}, {"type": "indicator"}],
                   [{"type": "bar"}, {"type": "scatter"}]]
        )
        
        # Prediction probability gauge
        fig.add_trace(
            go.Indicator(
                mode="gauge+number",
                value=probability,
                domain={'x': [0, 1], 'y': [0, 1]},
                title={'text': "Eligibility Probability"},
                gauge={
                    'axis': {'range': [None, 1]},
                    'bar': {'color': "darkblue"},
                    'steps': [
                        {'range': [0, 0.5], 'color': "lightcoral"},
                        {'range': [0.5, 1], 'color': "lightgreen"}
                    ],
                    'threshold': {
                        'line': {'color': "red", 'width': 4},
                        'thickness': 0.75,
                        'value': 0.5
                    }
                }
            ),
            row=1, col=1
        )
        
        # Confidence meter
        confidence = abs(probability - 0.5) * 2
        fig.add_trace(
            go.Indicator(
                mode="gauge+number",
                value=confidence,
                domain={'x': [0, 1], 'y': [0, 1]},
                title={'text': "Prediction Confidence"},
                gauge={
                    'axis': {'range': [None, 1]},
                    'bar': {'color': "orange"},
                    'steps': [
                        {'range': [0, 0.3], 'color': "lightcoral"},
                        {'range': [0.3, 0.7], 'color': "lightyellow"},
                        {'range': [0.7, 1], 'color': "lightgreen"}
                    ]
                }
            ),
            row=1, col=2
        )
        
        # Input features bar chart
        features = list(input_data.keys())
        values = list(input_data.values())
        
        fig.add_trace(
            go.Bar(x=features, y=values, name="Input Values", marker_color="skyblue"),
            row=2, col=1
        )
        
        # Simple probability visualization
        fig.add_trace(
            go.Scatter(
                x=[0, 1], 
                y=[probability, probability], 
                mode='lines+markers',
                name="Probability", 
                line=dict(color="red", width=3),
                marker=dict(size=10)
            ),
            row=2, col=2
        )
        
        fig.update_layout(
            height=800,
            showlegend=False,
            title_text="Student Eligibility Prediction Dashboard",
            title_x=0.5
        )
        
        return fig
    except Exception as e:
        return create_error_plot()

def batch_predict(file):
    """Batch prediction from uploaded CSV file"""
    try:
        if model is None or scaler is None:
            return "Model not loaded. Please check if all model files are uploaded.", None
        
        if file is None:
            return "Please upload a CSV file.", None
        
        # Read the uploaded file
        df = pd.read_csv(file)
        
        # Check if all required features are present
        missing_features = set(feature_names) - set(df.columns)
        if missing_features:
            return f"Missing features: {missing_features}", None
        
        # Select only the required features
        df_features = df[feature_names]
        
        # Scale the features
        df_scaled = scaler.transform(df_features)
        
        # Reshape for CNN
        df_reshaped = df_scaled.reshape(df_scaled.shape[0], df_scaled.shape[1], 1)
        
        # Make predictions
        probabilities = model.predict(df_reshaped).flatten()
        predictions = ["Eligible" if p > 0.5 else "Not Eligible" for p in probabilities]
        
        # Create results dataframe
        results_df = df_features.copy()
        results_df['Probability'] = probabilities
        results_df['Prediction'] = predictions
        results_df['Confidence'] = np.abs(probabilities - 0.5) * 2
        
        # Save results
        output_file = "batch_predictions.csv"
        results_df.to_csv(output_file, index=False)
        
        # Create summary statistics
        eligible_count = sum(1 for p in predictions if p == 'Eligible')
        not_eligible_count = len(predictions) - eligible_count
        
        summary = f"""Batch Prediction Summary:
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
πŸ“Š Total predictions: {len(results_df)}
βœ… Eligible: {eligible_count} ({eligible_count/len(predictions)*100:.1f}%)
❌ Not Eligible: {not_eligible_count} ({not_eligible_count/len(predictions)*100:.1f}%)
πŸ“ˆ Average Probability: {np.mean(probabilities):.4f}
🎯 Average Confidence: {np.mean(np.abs(probabilities - 0.5) * 2):.4f}
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Results saved to: {output_file}
        """
        
        return summary, output_file
        
    except Exception as e:
        return f"Error processing file: {str(e)}", None

# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# πŸŽ“ Student Eligibility Prediction")
    
    with gr.Tabs():
        with gr.Tab("Single Prediction"):
            inputs = []
            for feature in feature_names:
                inputs.append(gr.Number(label=feature, value=75))
            
            predict_btn = gr.Button("Predict")
            
            with gr.Row():
                prediction = gr.Textbox(label="Prediction")
                probability = gr.Textbox(label="Probability")
                confidence = gr.Textbox(label="Confidence")
            
            plot = gr.Plot()
            
            predict_btn.click(
                predict_student_eligibility,
                inputs=inputs,
                outputs=[prediction, probability, confidence, plot]
            )
        
        with gr.Tab("Batch Prediction"):
            file_input = gr.File(
                label="Upload CSV",
                file_types=[".csv"],
                type="filepath"  # Fixed: Changed from 'file' to 'filepath'
            )
            batch_btn = gr.Button("Process Batch")
            batch_output = gr.Textbox(label="Results")
            download = gr.File(label="Download")
            
            batch_btn.click(
                batch_predict,
                inputs=file_input,
                outputs=[batch_output, download]
            )

demo.launch()