File size: 8,261 Bytes
f448bd6 dad6db7 f448bd6 5870362 dad6db7 f448bd6 6d6f24b dad6db7 5870362 dad6db7 5870362 dad6db7 5870362 dad6db7 f448bd6 dad6db7 5870362 dad6db7 5870362 dad6db7 f448bd6 5870362 f448bd6 dad6db7 f448bd6 dad6db7 f448bd6 dad6db7 e0fce61 dad6db7 e0fce61 dad6db7 e0fce61 dad6db7 e0fce61 dad6db7 f448bd6 dad6db7 f448bd6 dad6db7 f448bd6 dad6db7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import streamlit as st
import time # Still imported, but time.sleep(5) will be removed from the main logic
import pandas as pd
import io
from streamlit_extras.stylable_container import stylable_container
import plotly.express as px
import zipfile
from gliner import GLiNER # Import GLiNER
import os
from comet_ml import Experiment
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
# --- App Header and Info ---
st.subheader("8-Named Entity Recognition Web App", divider="red")
st.link_button("DEMO APP by nlpblogs", "https://nlpblogs.com", type="tertiary")
expander = st.expander("**Important notes on the 8-Named Entity Recognition Web App**")
expander.write('''
**Named Entities:** This 8-Named Entity Recognition Web App predicts eight (8) labels (“person”, “country”, “city”, “organization”, “date”, “money”, “percent value”, “position”). Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags.
**How to Use:** Type or paste your text and press Ctrl + Enter. Then, click the 'Results' button to extract and tag entities in your text data.
**Usage Limits:** Unlimited number of Result requests.
**Customization:** To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
For any errors or inquiries, please contact us at info@nlpblogs.com
''')
# --- Sidebar ---
with st.sidebar:
container = st.container(border=True)
container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
st.subheader("Related NLP Web Apps", divider="red")
st.link_button("14-Named Entity Recognition Web App", "https://nlpblogs.com/shop/named-entity-recognition-ner/14-named-entity-recognition-web-app/", type="primary")
# --- Comet ML Setup ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
comet_initialized = True
else:
comet_initialized = False
st.warning("Comet ML not initialized. Check environment variables.")
# --- Cache the GLiNER model ---
@st.cache_resource
def load_gliner_model():
return GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0")
# Load the model using the cached function
model = load_gliner_model()
# --- End Caching ---
# --- Text Input and Clear Button ---
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", key='my_text_area')
st.write("**Input text**: ", text)
def clear_text():
st.session_state['my_text_area'] = ""
st.button("Clear text", on_click=clear_text)
st.divider()
# --- Results Section ---
if st.button("Results"):
if not text.strip(): # Check if the input text is empty
st.warning("Please enter some text to extract entities.")
else:
with st.spinner("Extracting entities..."): # Spinner while processing
# No need for time.sleep(5) here, as the model is already loaded
labels = ["person", "country", "city", "organization", "date", "money", "percent value", "position"]
entities = model.predict_entities(text, labels)
# Ensure entities is a list of dictionaries for DataFrame creation
# If no entities are found, 'entities' might be an empty list, which is fine for pd.DataFrame
df = pd.DataFrame(entities)
if comet_initialized:
experiment = Experiment(
api_key=COMET_API_KEY,
workspace=COMET_WORKSPACE,
project_name=COMET_PROJECT_NAME,
)
experiment.log_parameter("input_text", text)
experiment.log_table("predicted_entities", df)
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
df_styled = df.style.set_properties(**properties)
st.dataframe(df_styled)
with st.expander("See Glossary of tags"):
st.write('''
'**text**': ['entity extracted from your text data']
'**score**': ['accuracy score; how accurately a tag has been assigned to a given entity']
'**label**': ['label (tag) assigned to a given extracted entity']
'**start**': ['index of the start of the corresponding entity']
'**end**': ['index of the end of the corresponding entity']
''')
# --- Visualizations ---
if not df.empty: # Only plot if DataFrame is not empty
st.subheader("Tree map", divider="red")
fig = px.treemap(df, path=[px.Constant("all"), 'text', 'label'],
values='score', color='label')
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
st.plotly_chart(fig)
if comet_initialized:
experiment.log_figure(figure=fig, figure_name="entity_treemap")
col1, col2 = st.columns(2)
with col1:
st.subheader("Pie Chart", divider="red")
value_counts1 = df['label'].value_counts()
df1 = pd.DataFrame(value_counts1)
final_df = df1.reset_index().rename(columns={"index": "label"})
fig1 = px.pie(final_df, values='count', names='label', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels')
fig1.update_traces(textposition='inside', textinfo='percent+label')
st.plotly_chart(fig1)
if comet_initialized:
experiment.log_figure(figure=fig1, figure_name="label_pie_chart")
with col2:
st.subheader("Bar Chart", divider="red")
fig2 = px.bar(final_df, x="count", y="label", color="label", text_auto=True, title='Occurrences of predicted labels')
st.plotly_chart(fig2)
if comet_initialized:
experiment.log_figure(figure=fig2, figure_name="label_bar_chart")
else:
st.info("No entities found in the provided text.")
# --- Download Buttons ---
dfa = pd.DataFrame(
data={
'text': ['entity extracted from your text data'], 'score': ['accuracy score; how accurately a tag has been assigned to a given entity'], 'label': ['label (tag) assigned to a given extracted entity'],
'start': ['index of the start of the corresponding entity'],
'end': ['index of the end of the corresponding entity'],
})
buf = io.BytesIO()
with zipfile.ZipFile(buf, "w") as myzip:
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
with stylable_container(
key="download_button",
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
):
st.download_button(
label="Download zip file",
data=buf.getvalue(),
file_name="zip file.zip",
mime="application/zip",
)
if comet_initialized:
experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip")
st.divider()
if comet_initialized:
experiment.end() |