File size: 8,261 Bytes
f448bd6
dad6db7
f448bd6
 
 
 
5870362
dad6db7
f448bd6
 
 
6d6f24b
 
dad6db7
 
 
5870362
 
 
dad6db7
 
 
 
 
 
 
 
 
 
 
 
 
 
5870362
 
 
dad6db7
 
5870362
dad6db7
f448bd6
 
 
 
 
 
 
 
 
 
dad6db7
 
 
5870362
dad6db7
 
 
 
 
5870362
dad6db7
f448bd6
5870362
 
 
 
 
 
 
f448bd6
dad6db7
f448bd6
dad6db7
 
 
 
 
 
 
 
 
 
 
 
f448bd6
dad6db7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0fce61
dad6db7
e0fce61
dad6db7
e0fce61
dad6db7
e0fce61
dad6db7
 
 
 
 
 
 
 
 
 
f448bd6
dad6db7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f448bd6
dad6db7
f448bd6
dad6db7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import streamlit as st
import time # Still imported, but time.sleep(5) will be removed from the main logic
import pandas as pd
import io
from streamlit_extras.stylable_container import stylable_container
import plotly.express as px
import zipfile
from gliner import GLiNER # Import GLiNER
import os
from comet_ml import Experiment

st.set_page_config(layout="wide", page_title="Named Entity Recognition App")

# --- App Header and Info ---
st.subheader("8-Named Entity Recognition Web App", divider="red")
st.link_button("DEMO APP by nlpblogs", "https://nlpblogs.com", type="tertiary")

expander = st.expander("**Important notes on the 8-Named Entity Recognition Web App**")
expander.write('''
        **Named Entities:** This 8-Named Entity Recognition Web App predicts eight (8) labels (“person”, “country”, “city”, “organization”, “date”, “money”, “percent value”, “position”). Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags.
        
        **How to Use:** Type or paste your text and press Ctrl + Enter. Then, click the 'Results' button to extract and tag entities in your text data.
        
        **Usage Limits:** Unlimited number of Result requests.
        
        **Customization:** To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
        
        **Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
        
        For any errors or inquiries, please contact us at info@nlpblogs.com
    ''')

# --- Sidebar ---
with st.sidebar:
    container = st.container(border=True)
    container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
    st.subheader("Related NLP Web Apps", divider="red")
    st.link_button("14-Named Entity Recognition Web App", "https://nlpblogs.com/shop/named-entity-recognition-ner/14-named-entity-recognition-web-app/", type="primary")

# --- Comet ML Setup ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")

if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
    comet_initialized = True
else:
    comet_initialized = False
    st.warning("Comet ML not initialized. Check environment variables.")

# --- Cache the GLiNER model ---
@st.cache_resource
def load_gliner_model():
    
    return GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0")

# Load the model using the cached function
model = load_gliner_model()
# --- End Caching ---

# --- Text Input and Clear Button ---
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", key='my_text_area')
st.write("**Input text**: ", text)

def clear_text():
    st.session_state['my_text_area'] = ""

st.button("Clear text", on_click=clear_text)
st.divider()

# --- Results Section ---
if st.button("Results"):
    if not text.strip(): # Check if the input text is empty
        st.warning("Please enter some text to extract entities.")
    else:
        with st.spinner("Extracting entities..."): # Spinner while processing
            # No need for time.sleep(5) here, as the model is already loaded
            labels = ["person", "country", "city", "organization", "date", "money", "percent value", "position"]
            entities = model.predict_entities(text, labels)

            # Ensure entities is a list of dictionaries for DataFrame creation
            # If no entities are found, 'entities' might be an empty list, which is fine for pd.DataFrame
            df = pd.DataFrame(entities)

            if comet_initialized:
                experiment = Experiment(
                    api_key=COMET_API_KEY,
                    workspace=COMET_WORKSPACE,
                    project_name=COMET_PROJECT_NAME,
                )
                experiment.log_parameter("input_text", text)
                experiment.log_table("predicted_entities", df)

            properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
            df_styled = df.style.set_properties(**properties)
            st.dataframe(df_styled)

            with st.expander("See Glossary of tags"):
                st.write('''
                '**text**': ['entity extracted from your text data']
                
                '**score**': ['accuracy score; how accurately a tag has been assigned to a given entity']
                
                '**label**': ['label (tag) assigned to a given extracted entity']
                
                '**start**': ['index of the start of the corresponding entity']
                
                '**end**': ['index of the end of the corresponding entity']
                ''')

            # --- Visualizations ---
            if not df.empty: # Only plot if DataFrame is not empty
                st.subheader("Tree map", divider="red")
                fig = px.treemap(df, path=[px.Constant("all"), 'text', 'label'],
                                 values='score', color='label')
                fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
                st.plotly_chart(fig)
                if comet_initialized:
                    experiment.log_figure(figure=fig, figure_name="entity_treemap")

                col1, col2 = st.columns(2)
                with col1:
                    st.subheader("Pie Chart", divider="red")
                    value_counts1 = df['label'].value_counts()
                    df1 = pd.DataFrame(value_counts1)
                    final_df = df1.reset_index().rename(columns={"index": "label"})
                    fig1 = px.pie(final_df, values='count', names='label', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels')
                    fig1.update_traces(textposition='inside', textinfo='percent+label')
                    st.plotly_chart(fig1)
                    if comet_initialized:
                        experiment.log_figure(figure=fig1, figure_name="label_pie_chart")

                with col2:
                    st.subheader("Bar Chart", divider="red")
                    fig2 = px.bar(final_df, x="count", y="label", color="label", text_auto=True, title='Occurrences of predicted labels')
                    st.plotly_chart(fig2)
                    if comet_initialized:
                        experiment.log_figure(figure=fig2, figure_name="label_bar_chart")
            else:
                st.info("No entities found in the provided text.")

            # --- Download Buttons ---
            dfa = pd.DataFrame(
                data={
                    'text': ['entity extracted from your text data'], 'score': ['accuracy score; how accurately a tag has been assigned to a given entity'], 'label': ['label (tag) assigned to a given extracted entity'],
                    'start': ['index of the start of the corresponding entity'],
                    'end': ['index of the end of the corresponding entity'],
                    })
            buf = io.BytesIO()
            with zipfile.ZipFile(buf, "w") as myzip:
                myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
                myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))

            with stylable_container(
                key="download_button",
                css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
            ):
                st.download_button(
                    label="Download zip file",
                    data=buf.getvalue(),
                    file_name="zip file.zip",
                    mime="application/zip",
                )
                if comet_initialized:
                    experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip")

            st.divider()
            if comet_initialized:
                experiment.end()