Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,41 @@
|
|
1 |
import streamlit as st
|
2 |
-
import time
|
3 |
import pandas as pd
|
4 |
import io
|
5 |
-
from transformers import pipeline
|
6 |
from streamlit_extras.stylable_container import stylable_container
|
7 |
import plotly.express as px
|
8 |
import zipfile
|
9 |
-
from gliner import GLiNER
|
10 |
-
|
11 |
import os
|
12 |
from comet_ml import Experiment
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
st.
|
17 |
-
st.link_button("DEMO APP by nlpblogs", "https://nlpblogs.com", type = "tertiary")
|
18 |
|
19 |
expander = st.expander("**Important notes on the 8-Named Entity Recognition Web App**")
|
20 |
expander.write('''
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
If your connection times out, please refresh the page or reopen the app's URL.
|
36 |
-
For any errors or inquiries, please contact us at info@nlpblogs.com
|
37 |
-
|
38 |
-
''')
|
39 |
-
|
40 |
-
|
41 |
with st.sidebar:
|
42 |
container = st.container(border=True)
|
43 |
container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
|
44 |
-
st.subheader("Related NLP Web Apps", divider
|
45 |
-
st.link_button("14-Named Entity Recognition Web App", "https://nlpblogs.com/shop/named-entity-recognition-ner/14-named-entity-recognition-web-app/", type
|
46 |
-
|
47 |
|
|
|
48 |
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
49 |
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
50 |
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
@@ -55,8 +46,17 @@ else:
|
|
55 |
comet_initialized = False
|
56 |
st.warning("Comet ML not initialized. Check environment variables.")
|
57 |
|
|
|
|
|
|
|
58 |
|
|
|
|
|
|
|
|
|
|
|
59 |
|
|
|
60 |
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", key='my_text_area')
|
61 |
st.write("**Input text**: ", text)
|
62 |
|
@@ -64,96 +64,100 @@ def clear_text():
|
|
64 |
st.session_state['my_text_area'] = ""
|
65 |
|
66 |
st.button("Clear text", on_click=clear_text)
|
67 |
-
|
68 |
st.divider()
|
69 |
|
|
|
70 |
if st.button("Results"):
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
)
|
84 |
-
experiment.log_parameter("input_text", text)
|
85 |
-
experiment.log_table("predicted_entities", df)
|
86 |
-
|
87 |
-
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
|
88 |
-
df_styled = df.style.set_properties(**properties)
|
89 |
-
st.dataframe(df_styled)
|
90 |
-
|
91 |
-
with st.expander("See Glossary of tags"):
|
92 |
-
st.write('''
|
93 |
-
'**text**': ['entity extracted from your text data']
|
94 |
-
|
95 |
-
'**score**': ['accuracy score; how accurately a tag has been assigned to a given entity']
|
96 |
-
|
97 |
-
'**label**': ['label (tag) assigned to a given extracted entity']
|
98 |
-
|
99 |
-
'**start**': ['index of the start of the corresponding entity']
|
100 |
-
|
101 |
-
'**end**': ['index of the end of the corresponding entity']
|
102 |
-
''')
|
103 |
-
|
104 |
-
if df is not None:
|
105 |
-
fig = px.treemap(df, path=[px.Constant("all"), 'text', 'label'],
|
106 |
-
values='score', color='label')
|
107 |
-
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
108 |
-
st.subheader("Tree map", divider = "red")
|
109 |
-
st.plotly_chart(fig)
|
110 |
if comet_initialized:
|
111 |
-
experiment
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
if comet_initialized:
|
124 |
-
experiment.log_figure(figure=
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
if comet_initialized:
|
130 |
-
experiment.
|
131 |
-
|
132 |
-
dfa = pd.DataFrame(
|
133 |
-
data={
|
134 |
-
'text': ['entity extracted from your text data'], 'score': ['accuracy score; how accurately a tag has been assigned to a given entity'], 'label': ['label (tag) assigned to a given extracted entity'],
|
135 |
-
'start': ['index of the start of the corresponding entity'],
|
136 |
-
'end': ['index of the end of the corresponding entity'],
|
137 |
-
})
|
138 |
-
buf = io.BytesIO()
|
139 |
-
with zipfile.ZipFile(buf, "w") as myzip:
|
140 |
-
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
141 |
-
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
142 |
-
|
143 |
-
|
144 |
-
with stylable_container(
|
145 |
-
key="download_button",
|
146 |
-
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
|
147 |
-
):
|
148 |
-
st.download_button(
|
149 |
-
label="Download zip file",
|
150 |
-
data=buf.getvalue(),
|
151 |
-
file_name="zip file.zip",
|
152 |
-
mime="application/zip",
|
153 |
-
)
|
154 |
-
if comet_initialized:
|
155 |
-
experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip")
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
1 |
import streamlit as st
|
2 |
+
import time # Still imported, but time.sleep(5) will be removed from the main logic
|
3 |
import pandas as pd
|
4 |
import io
|
|
|
5 |
from streamlit_extras.stylable_container import stylable_container
|
6 |
import plotly.express as px
|
7 |
import zipfile
|
8 |
+
from gliner import GLiNER # Import GLiNER
|
|
|
9 |
import os
|
10 |
from comet_ml import Experiment
|
11 |
|
12 |
+
# --- App Header and Info ---
|
13 |
+
st.subheader("8-Named Entity Recognition Web App", divider="red")
|
14 |
+
st.link_button("DEMO APP by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
|
|
15 |
|
16 |
expander = st.expander("**Important notes on the 8-Named Entity Recognition Web App**")
|
17 |
expander.write('''
|
18 |
+
**Named Entities:** This 8-Named Entity Recognition Web App predicts eight (8) labels (“person”, “country”, “city”, “organization”, “date”, “money”, “percent value”, “position”). Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags.
|
19 |
+
|
20 |
+
**How to Use:** Type or paste your text and press Ctrl + Enter. Then, click the 'Results' button to extract and tag entities in your text data.
|
21 |
+
|
22 |
+
**Usage Limits:** Unlimited number of Result requests.
|
23 |
+
|
24 |
+
**Customization:** To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
|
25 |
+
|
26 |
+
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
|
27 |
+
|
28 |
+
For any errors or inquiries, please contact us at info@nlpblogs.com
|
29 |
+
''')
|
30 |
+
|
31 |
+
# --- Sidebar ---
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
with st.sidebar:
|
33 |
container = st.container(border=True)
|
34 |
container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
|
35 |
+
st.subheader("Related NLP Web Apps", divider="red")
|
36 |
+
st.link_button("14-Named Entity Recognition Web App", "https://nlpblogs.com/shop/named-entity-recognition-ner/14-named-entity-recognition-web-app/", type="primary")
|
|
|
37 |
|
38 |
+
# --- Comet ML Setup ---
|
39 |
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
40 |
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
41 |
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
|
|
46 |
comet_initialized = False
|
47 |
st.warning("Comet ML not initialized. Check environment variables.")
|
48 |
|
49 |
+
# --- Cache the GLiNER model ---
|
50 |
+
@st.cache_resource
|
51 |
+
def load_gliner_model():
|
52 |
|
53 |
+
return GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0")
|
54 |
+
|
55 |
+
# Load the model using the cached function
|
56 |
+
model = load_gliner_model()
|
57 |
+
# --- End Caching ---
|
58 |
|
59 |
+
# --- Text Input and Clear Button ---
|
60 |
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", key='my_text_area')
|
61 |
st.write("**Input text**: ", text)
|
62 |
|
|
|
64 |
st.session_state['my_text_area'] = ""
|
65 |
|
66 |
st.button("Clear text", on_click=clear_text)
|
|
|
67 |
st.divider()
|
68 |
|
69 |
+
# --- Results Section ---
|
70 |
if st.button("Results"):
|
71 |
+
if not text.strip(): # Check if the input text is empty
|
72 |
+
st.warning("Please enter some text to extract entities.")
|
73 |
+
else:
|
74 |
+
with st.spinner("Extracting entities..."): # Spinner while processing
|
75 |
+
# No need for time.sleep(5) here, as the model is already loaded
|
76 |
+
labels = ["person", "country", "city", "organization", "date", "money", "percent value", "position"]
|
77 |
+
entities = model.predict_entities(text, labels)
|
78 |
+
|
79 |
+
# Ensure entities is a list of dictionaries for DataFrame creation
|
80 |
+
# If no entities are found, 'entities' might be an empty list, which is fine for pd.DataFrame
|
81 |
+
df = pd.DataFrame(entities)
|
82 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
if comet_initialized:
|
84 |
+
experiment = Experiment(
|
85 |
+
api_key=COMET_API_KEY,
|
86 |
+
workspace=COMET_WORKSPACE,
|
87 |
+
project_name=COMET_PROJECT_NAME,
|
88 |
+
)
|
89 |
+
experiment.log_parameter("input_text", text)
|
90 |
+
experiment.log_table("predicted_entities", df)
|
91 |
+
|
92 |
+
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
|
93 |
+
df_styled = df.style.set_properties(**properties)
|
94 |
+
st.dataframe(df_styled)
|
95 |
+
|
96 |
+
with st.expander("See Glossary of tags"):
|
97 |
+
st.write('''
|
98 |
+
'**text**': ['entity extracted from your text data']
|
99 |
+
'**score**': ['accuracy score; how accurately a tag has been assigned to a given entity']
|
100 |
+
'**label**': ['label (tag) assigned to a given extracted entity']
|
101 |
+
'**start**': ['index of the start of the corresponding entity']
|
102 |
+
'**end**': ['index of the end of the corresponding entity']
|
103 |
+
''')
|
104 |
+
|
105 |
+
# --- Visualizations ---
|
106 |
+
if not df.empty: # Only plot if DataFrame is not empty
|
107 |
+
st.subheader("Tree map", divider="red")
|
108 |
+
fig = px.treemap(df, path=[px.Constant("all"), 'text', 'label'],
|
109 |
+
values='score', color='label')
|
110 |
+
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
111 |
+
st.plotly_chart(fig)
|
112 |
if comet_initialized:
|
113 |
+
experiment.log_figure(figure=fig, figure_name="entity_treemap")
|
114 |
+
|
115 |
+
col1, col2 = st.columns(2)
|
116 |
+
with col1:
|
117 |
+
st.subheader("Pie Chart", divider="red")
|
118 |
+
value_counts1 = df['label'].value_counts()
|
119 |
+
df1 = pd.DataFrame(value_counts1)
|
120 |
+
final_df = df1.reset_index().rename(columns={"index": "label"})
|
121 |
+
fig1 = px.pie(final_df, values='count', names='label', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels')
|
122 |
+
fig1.update_traces(textposition='inside', textinfo='percent+label')
|
123 |
+
st.plotly_chart(fig1)
|
124 |
+
if comet_initialized:
|
125 |
+
experiment.log_figure(figure=fig1, figure_name="label_pie_chart")
|
126 |
+
|
127 |
+
with col2:
|
128 |
+
st.subheader("Bar Chart", divider="red")
|
129 |
+
fig2 = px.bar(final_df, x="count", y="label", color="label", text_auto=True, title='Occurrences of predicted labels')
|
130 |
+
st.plotly_chart(fig2)
|
131 |
+
if comet_initialized:
|
132 |
+
experiment.log_figure(figure=fig2, figure_name="label_bar_chart")
|
133 |
+
else:
|
134 |
+
st.info("No entities found in the provided text.")
|
135 |
+
|
136 |
+
# --- Download Buttons ---
|
137 |
+
dfa = pd.DataFrame(
|
138 |
+
data={
|
139 |
+
'text': ['entity extracted from your text data'], 'score': ['accuracy score; how accurately a tag has been assigned to a given entity'], 'label': ['label (tag) assigned to a given extracted entity'],
|
140 |
+
'start': ['index of the start of the corresponding entity'],
|
141 |
+
'end': ['index of the end of the corresponding entity'],
|
142 |
+
})
|
143 |
+
buf = io.BytesIO()
|
144 |
+
with zipfile.ZipFile(buf, "w") as myzip:
|
145 |
+
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
146 |
+
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
147 |
+
|
148 |
+
with stylable_container(
|
149 |
+
key="download_button",
|
150 |
+
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
|
151 |
+
):
|
152 |
+
st.download_button(
|
153 |
+
label="Download zip file",
|
154 |
+
data=buf.getvalue(),
|
155 |
+
file_name="zip file.zip",
|
156 |
+
mime="application/zip",
|
157 |
+
)
|
158 |
if comet_initialized:
|
159 |
+
experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
+
st.divider()
|
162 |
+
if comet_initialized:
|
163 |
+
experiment.end()
|