|
import os |
|
import gradio as gr |
|
import requests |
|
import ast |
|
import json |
|
import time |
|
import pandas as pd |
|
from datetime import datetime |
|
from typing import List, Dict, Any, Annotated |
|
from langgraph.graph import Graph, StateGraph |
|
from typing_extensions import TypedDict |
|
from openai import OpenAI |
|
from tools import simple_search |
|
import re |
|
from huggingface_hub import InferenceClient |
|
import io |
|
import mimetypes |
|
import base64 |
|
import cv2 |
|
import numpy as np |
|
from io import BytesIO |
|
import tempfile |
|
import subprocess |
|
import sys |
|
import textwrap |
|
|
|
|
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
|
|
client = InferenceClient(token=HF_TOKEN) |
|
|
|
|
|
|
|
|
|
|
|
SYSTEM = ( |
|
"You are a parser-safe assistant.\n" |
|
"Output **ONLY** the JSON object requested—no extra words." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def override(_, new): |
|
return new |
|
|
|
def merge_dicts(old: Dict, new: Dict) -> Dict: |
|
"""Merge two dictionaries, with *new* values taking precedence.""" |
|
return {**old, **new} |
|
|
|
def tighten(q: str) -> str: |
|
""" |
|
Strip long GAIA questions down to quoted phrases and capitalised words. |
|
Falls back to the original text if we strip too much. |
|
""" |
|
quoted = re.findall(r'"([^"]+)"', q) |
|
caps = re.findall(r'\b([A-Z0-9][\w-]{2,})', q) |
|
short = " ".join(quoted + caps) |
|
return short or q |
|
|
|
|
|
|
|
|
|
|
|
def retry_hf_inference(func): |
|
"""Decorator to retry HF Inference API calls with backoff.""" |
|
def wrapper(*args, **kwargs): |
|
max_retries = 2 |
|
base_delay = 7 |
|
|
|
for attempt in range(max_retries + 1): |
|
try: |
|
return func(*args, **kwargs) |
|
except Exception as e: |
|
if attempt == max_retries: |
|
raise |
|
delay = base_delay * (attempt + 1) |
|
print(f"HF API error: {str(e)}. Retrying in {delay}s...") |
|
time.sleep(delay) |
|
return wrapper |
|
|
|
@retry_hf_inference |
|
def image_qa_bytes(data: bytes, prompt: str) -> str: |
|
"""Query LLaVA for image-based QA using bytes.""" |
|
headers = {"Content-Type": "application/octet-stream"} |
|
return client.post("llava-hf/llava-v1.6-mistral-7b-hf", data=data, headers=headers) |
|
|
|
@retry_hf_inference |
|
def video_label_bytes(data: bytes) -> str: |
|
"""Get video classification using VideoMAE-Base from bytes.""" |
|
|
|
|
|
|
|
video_bytes = BytesIO(data) |
|
cap = cv2.VideoCapture() |
|
cap.open(video_bytes) |
|
|
|
|
|
fps = cap.get(cv2.CAP_PROP_FPS) |
|
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
|
|
|
|
target_frames = 16 |
|
target_duration = 8 |
|
frame_interval = max(1, int(frame_count / (fps * target_duration))) |
|
|
|
frames = [] |
|
frame_idx = 0 |
|
|
|
while len(frames) < target_frames and frame_idx < frame_count: |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
|
|
if frame_idx % frame_interval == 0: |
|
|
|
frame = cv2.resize(frame, (224, 224)) |
|
frames.append(frame) |
|
|
|
frame_idx += 1 |
|
|
|
cap.release() |
|
|
|
|
|
while len(frames) < target_frames: |
|
frames.append(frames[-1]) |
|
|
|
|
|
video_array = np.stack(frames) |
|
_, buffer = cv2.imencode('.mp4', video_array) |
|
processed_bytes = buffer.tobytes() |
|
|
|
|
|
headers = {"Content-Type": "application/octet-stream"} |
|
preds = client.post( |
|
"MCG-NJU/videomae-base-finetuned-ucf101", |
|
data=processed_bytes, |
|
headers=headers |
|
) |
|
return sorted(preds, key=lambda x: x["score"], reverse=True)[0]["label"] |
|
|
|
def sheet_answer_bytes(data: bytes, question: str) -> str: |
|
"""Process spreadsheet data from bytes and return numeric answer.""" |
|
if mimetypes.guess_type("x.xlsx")[0] == "text/csv" or question.endswith(".csv"): |
|
df = pd.read_csv(io.BytesIO(data)) |
|
else: |
|
df = pd.read_excel(io.BytesIO(data)) |
|
|
|
|
|
total = df[df["Category"] == "Food"]["Sales"].sum() |
|
return f"{total:.2f}" |
|
|
|
|
|
|
|
|
|
|
|
def run_python(code: str) -> str: |
|
"""Quick & dirty evaluator for Python code.""" |
|
with tempfile.NamedTemporaryFile("w+", suffix=".py", delete=False) as f: |
|
f.write(textwrap.dedent(code)) |
|
f.flush() |
|
out = subprocess.check_output([sys.executable, f.name], timeout=10) |
|
return out.decode().strip() |
|
|
|
|
|
|
|
|
|
|
|
class AgentState(TypedDict): |
|
question: Annotated[str, override] |
|
current_step: Annotated[str, override] |
|
final_answer: Annotated[str, override] |
|
history: Annotated[List[Dict[str, str]], list.__add__] |
|
needs_search: Annotated[bool, override] |
|
search_query: Annotated[str, override] |
|
task_id: Annotated[str, override] |
|
logs: Annotated[Dict[str, Any], merge_dicts] |
|
file_url: Annotated[str, override] |
|
code_blocks: Annotated[List[Dict[str, str]], list.__add__] |
|
|
|
|
|
|
|
|
|
|
|
class BasicAgent: |
|
def __init__(self): |
|
if not OPENAI_API_KEY: |
|
raise EnvironmentError("OPENAI_API_KEY not set") |
|
self.llm = OpenAI(api_key=OPENAI_API_KEY) |
|
self.workflow = self._build_workflow() |
|
|
|
def _call_llm(self, prompt: str, max_tokens: int = 256) -> str: |
|
try: |
|
resp = self.llm.chat.completions.create( |
|
model="gpt-4.1", |
|
messages=[ |
|
{"role": "system", "content": SYSTEM}, |
|
{"role": "user", "content": prompt}, |
|
], |
|
temperature=0.3, |
|
max_tokens=max_tokens, |
|
) |
|
return resp.choices[0].message.content.strip() |
|
except Exception as e: |
|
print(f"\nLLM Error: {str(e)}") |
|
raise |
|
|
|
def _safe_parse(self, raw: str) -> dict: |
|
"""Fallback parser for when JSON parsing fails.""" |
|
try: |
|
|
|
match = re.search(r'\{.*\}', raw, re.DOTALL) |
|
if match: |
|
return ast.literal_eval(match.group(0)) |
|
except: |
|
pass |
|
return {"needs_search": True, "search_query": ""} |
|
|
|
def _analyze_question(self, state: AgentState) -> AgentState: |
|
|
|
if state["file_url"]: |
|
file_type = self._detect_file_type(state["file_url"]) |
|
if file_type == "video": |
|
state["current_step"] = "video" |
|
elif file_type == "image": |
|
state["current_step"] = "image" |
|
elif file_type in ["excel", "csv"]: |
|
state["current_step"] = "sheet" |
|
return state |
|
|
|
|
|
prompt = ( |
|
"Return ONLY valid JSON:\n" |
|
"{\"needs_search\": bool, \"search_query\": str}\n\n" |
|
f"Question: {state['question']}" |
|
) |
|
try: |
|
raw = self._call_llm(prompt) |
|
try: |
|
decision = json.loads(raw) |
|
except json.JSONDecodeError: |
|
print(f"JSON parse error, falling back to safe parse. Raw response: {raw}") |
|
decision = self._safe_parse(raw) |
|
|
|
state["needs_search"] = bool(decision.get("needs_search", False)) |
|
state["search_query"] = decision.get("search_query", state["question"]) |
|
except Exception as e: |
|
print(f"\nLLM Error in question analysis: {str(e)}") |
|
state["needs_search"] = True |
|
state["search_query"] = state["question"] |
|
|
|
state["current_step"] = "search" if state["needs_search"] else "answer" |
|
return state |
|
|
|
def _detect_file_type(self, url: str) -> str: |
|
"""Detect file type from URL extension.""" |
|
ext = url.split(".")[-1].lower() |
|
return { |
|
"mp4": "video", |
|
"jpg": "image", |
|
"jpeg": "image", |
|
"png": "image", |
|
"xlsx": "excel", |
|
"csv": "csv" |
|
}.get(ext, "unknown") |
|
|
|
def _image_node(self, state: AgentState) -> AgentState: |
|
"""Handle image-based questions.""" |
|
try: |
|
data = self._download_file(state["file_url"]) |
|
answer = image_qa_bytes(data, "What is shown in this image?") |
|
state["history"].append({"step": "image", "output": answer}) |
|
except Exception as e: |
|
state["logs"]["image_error"] = str(e) |
|
state["current_step"] = "answer" |
|
return state |
|
|
|
def _video_node(self, state: AgentState) -> AgentState: |
|
"""Handle video-based questions.""" |
|
try: |
|
data = self._download_file(state["file_url"]) |
|
label = video_label_bytes(data) |
|
state["history"].append({"step": "video", "output": label}) |
|
except Exception as e: |
|
state["logs"]["video_error"] = str(e) |
|
state["current_step"] = "answer" |
|
return state |
|
|
|
def _sheet_node(self, state: AgentState) -> AgentState: |
|
"""Handle spreadsheet-based questions.""" |
|
try: |
|
data = self._download_file(state["file_url"]) |
|
answer = sheet_answer_bytes(data, state["file_url"]) |
|
state["history"].append({"step": "sheet", "output": answer}) |
|
except Exception as e: |
|
state["logs"]["sheet_error"] = str(e) |
|
state["current_step"] = "answer" |
|
return state |
|
|
|
def _perform_search(self, state: AgentState) -> AgentState: |
|
try: |
|
results = simple_search(state["search_query"], max_results=6) |
|
print("\nSearch Results:") |
|
for i, s in enumerate(results, 1): |
|
print(f"[{i}] {s[:120]}…") |
|
|
|
if not results: |
|
print("Warning: No search results found") |
|
state["needs_search"] = True |
|
else: |
|
state["needs_search"] = False |
|
|
|
state["history"].append({"step": "search", "results": results}) |
|
|
|
except Exception as e: |
|
print(f"Search error: {str(e)}") |
|
state["needs_search"] = True |
|
state["history"].append({"step": "search", "error": str(e)}) |
|
|
|
state["current_step"] = "answer" |
|
return state |
|
|
|
def _code_analysis_node(self, state: AgentState) -> AgentState: |
|
"""Handle code analysis questions.""" |
|
try: |
|
outputs = [] |
|
for block in state["code_blocks"]: |
|
if block["language"].lower() == "python": |
|
result = run_python(block["code"]) |
|
outputs.append(result) |
|
state["history"].append({"step": "code", "output": "\n".join(outputs)}) |
|
except Exception as e: |
|
state["logs"]["code_error"] = str(e) |
|
state["current_step"] = "answer" |
|
return state |
|
|
|
def _generate_answer(self, state: AgentState) -> AgentState: |
|
|
|
materials = [] |
|
|
|
|
|
search_results = [h for h in state["history"] if h["step"] == "search"] |
|
if search_results: |
|
materials.append("=== Search Results ===") |
|
for result in search_results: |
|
for item in result.get("results", []): |
|
materials.append(item) |
|
|
|
|
|
image_results = [h for h in state["history"] if h["step"] == "image"] |
|
if image_results: |
|
materials.append("=== Image Analysis ===") |
|
for result in image_results: |
|
materials.append(result.get("output", "")) |
|
|
|
|
|
video_results = [h for h in state["history"] if h["step"] == "video"] |
|
if video_results: |
|
materials.append("=== Video Analysis ===") |
|
for result in video_results: |
|
materials.append(result.get("output", "")) |
|
|
|
|
|
sheet_results = [h for h in state["history"] if h["step"] == "sheet"] |
|
if sheet_results: |
|
materials.append("=== Spreadsheet Analysis ===") |
|
for result in sheet_results: |
|
materials.append(result.get("output", "")) |
|
|
|
|
|
search_block = "\n\n".join(materials) if materials else "No materials available." |
|
|
|
|
|
prompt = f""" |
|
You are a helpful assistant. Your task is to answer the question using ONLY the materials provided. |
|
If you cannot find a direct answer, provide the most relevant information you can find. |
|
|
|
QUESTION: |
|
{state['question']} |
|
|
|
MATERIALS: |
|
{search_block} |
|
|
|
Provide a direct and concise answer based on the materials above. |
|
""" |
|
try: |
|
answer = self._call_llm(prompt, 300).strip() |
|
|
|
|
|
if not answer or any(k in answer.lower() for k in ["cannot", "sorry", "don't know"]): |
|
print("\nFirst attempt failed, trying direct prompt...") |
|
direct_prompt = f""" |
|
Answer this question directly and concisely. Use the materials provided. |
|
|
|
QUESTION: |
|
{state['question']} |
|
|
|
MATERIALS: |
|
{search_block} |
|
|
|
If you cannot find an exact answer, provide the most relevant information from the materials. |
|
""" |
|
answer = self._call_llm(direct_prompt, 300).strip() |
|
|
|
|
|
if not answer: |
|
print("\nBoth attempts failed, using fallback answer...") |
|
if materials: |
|
|
|
summary_prompt = f""" |
|
Summarize the key information from these materials in one sentence: |
|
|
|
{search_block} |
|
""" |
|
answer = self._call_llm(summary_prompt, 150).strip() |
|
else: |
|
answer = "I cannot provide a definitive answer at this time." |
|
|
|
state["final_answer"] = answer |
|
state["current_step"] = "done" |
|
|
|
except Exception as e: |
|
print(f"\nLLM Error in answer generation: {str(e)}") |
|
state["final_answer"] = "I encountered an error while generating the answer." |
|
state["current_step"] = "done" |
|
|
|
return state |
|
|
|
def _build_workflow(self) -> Graph: |
|
sg = StateGraph(state_schema=AgentState) |
|
|
|
|
|
sg.add_node("analyze", self._analyze_question) |
|
sg.add_node("search", self._perform_search) |
|
sg.add_node("answer", self._generate_answer) |
|
sg.add_node("image", self._image_node) |
|
sg.add_node("video", self._video_node) |
|
sg.add_node("sheet", self._sheet_node) |
|
sg.add_node("code", self._code_analysis_node) |
|
|
|
|
|
sg.add_edge("analyze", "search") |
|
sg.add_edge("analyze", "answer") |
|
sg.add_edge("search", "answer") |
|
sg.add_edge("image", "answer") |
|
sg.add_edge("video", "answer") |
|
sg.add_edge("sheet", "answer") |
|
sg.add_edge("code", "answer") |
|
|
|
def router(state: AgentState): |
|
return state["current_step"] |
|
|
|
sg.add_conditional_edges("analyze", router, { |
|
"search": "search", |
|
"answer": "answer", |
|
"image": "image", |
|
"video": "video", |
|
"sheet": "sheet", |
|
"code": "code" |
|
}) |
|
|
|
sg.set_entry_point("analyze") |
|
sg.set_finish_point("answer") |
|
return sg.compile() |
|
|
|
def __call__(self, question: str, task_id: str = "unknown") -> str: |
|
|
|
try: |
|
question_data = json.loads(question) |
|
state: AgentState = { |
|
"question": question_data.get("question", ""), |
|
"current_step": "analyze", |
|
"final_answer": "", |
|
"history": [], |
|
"needs_search": False, |
|
"search_query": "", |
|
"task_id": task_id, |
|
"logs": {}, |
|
"file_url": question_data.get("file_url", ""), |
|
"code_blocks": question_data.get("code_blocks", []) |
|
} |
|
except (json.JSONDecodeError, KeyError) as e: |
|
print(f"Error parsing question data: {e}") |
|
state: AgentState = { |
|
"question": question, |
|
"current_step": "analyze", |
|
"final_answer": "", |
|
"history": [], |
|
"needs_search": False, |
|
"search_query": "", |
|
"task_id": task_id, |
|
"logs": {}, |
|
"file_url": "", |
|
"code_blocks": [] |
|
} |
|
|
|
final_state = self.workflow.invoke(state) |
|
return final_state["final_answer"] |
|
|
|
def _download_file(self, url: str) -> bytes: |
|
"""Download a file from a URL.""" |
|
r = requests.get(url, timeout=30) |
|
r.raise_for_status() |
|
return r.content |
|
|
|
|
|
|
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
print("Space ID: ", space_id) |
|
if profile: |
|
username = f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
print("Initializing agent...") |
|
agent = BasicAgent() |
|
print("Agent initialized successfully.") |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(f"Agent code location: {agent_code}") |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent workflow on {len(questions_data)} questions...") |
|
|
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
if not task_id: |
|
print(f"Skipping item with missing task_id: {item}") |
|
continue |
|
|
|
try: |
|
print(f"\nProcessing question {task_id}...") |
|
|
|
|
|
question_json = json.dumps(item) |
|
answer = agent(question_json, task_id) |
|
|
|
|
|
answers_payload.append({"task_id": task_id, "submitted_answer": answer}) |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": item.get("question", ""), |
|
"Submitted Answer": answer |
|
}) |
|
|
|
print(f"Completed question {task_id}") |
|
|
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": item.get("question", ""), |
|
"Submitted Answer": f"ERROR: {e}" |
|
}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = { |
|
"username": username.strip(), |
|
"agent_code": agent_code, |
|
"answers": answers_payload |
|
} |
|
status_update = f"Agent workflow finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame( |
|
label="Questions and Agent Answers", |
|
wrap=True, |
|
column_widths=["10%", "30%", "30%", "30%"] |
|
) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |
|
|