File size: 26,600 Bytes
10e9b7d eccf8e4 29140cf 323f26e fc6f881 323f26e fc6f881 23a6007 9029749 fc6f881 622f2bb 3b2a7e8 cc1c674 4e8e7db 844e3aa cc1c674 fc6f881 7eca316 fc6f881 9029749 fc6f881 9029749 fc6f881 2200521 fc6f881 cc1c674 fc6f881 a82796c 49d3a15 fa8a2b0 4e8e7db fa8a2b0 4e8e7db cc1c674 49d3a15 fa8a2b0 4e8e7db fa8a2b0 4e8e7db fa8a2b0 ebec9e2 fa8a2b0 844e3aa cc1c674 844e3aa 323f26e 4e8e7db 844e3aa 4e8e7db fc6f881 935cde9 defd4dc 9029749 fc6f881 9029749 a82796c fc6f881 49d3a15 844e3aa fc6f881 1c5f119 31243f4 34292b8 fc6f881 34292b8 fc6f881 e073c39 7eca316 e073c39 7eca316 e073c39 ffbc2d3 4beca24 e5ab611 ebc7e51 e073c39 8286288 ffbc2d3 8286288 b692f0c ffbc2d3 8286288 b692f0c d07b7a3 8286288 b692f0c 8286288 5854ce9 fa8a2b0 ebc7e51 fa8a2b0 8286288 cc1c674 29140cf 49d3a15 cc1c674 49d3a15 cc1c674 49d3a15 cc1c674 49d3a15 cc1c674 49d3a15 cc1c674 49d3a15 ebec9e2 fc6f881 4f114c3 e073c39 4f114c3 e073c39 4f114c3 e073c39 7dfd849 4e8e7db 844e3aa 4e8e7db fc6f881 49d3a15 8286288 e5ab611 49d3a15 5e54175 d07b7a3 1805291 d07b7a3 1805291 cc1c674 1805291 cc1c674 1805291 c6c72f5 1805291 b692f0c c6c72f5 b692f0c d07b7a3 c6c72f5 d07b7a3 c6c72f5 d07b7a3 c6c72f5 d07b7a3 c6c72f5 d07b7a3 b692f0c ebec9e2 fc6f881 cc1c674 e073c39 fc6f881 cc1c674 4e8e7db fc6f881 cc1c674 fc6f881 e073c39 cc1c674 4e8e7db fc6f881 cc1c674 4e8e7db cc1c674 fc6f881 323f26e 844e3aa e5ab611 844e3aa fc6f881 8286288 ebc7e51 8286288 fc6f881 4021bf3 3e0fef2 31243f4 7d65c66 fc6f881 7e21665 7e4a06b 3e0fef2 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 3e0fef2 31243f4 fc6f881 31243f4 fc6f881 31243f4 3c4371f 31243f4 3e0fef2 36ed51a 3e0fef2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3e0fef2 31243f4 e80aab9 31243f4 3c4371f 3e0fef2 7d65c66 31243f4 e80aab9 b177367 7d65c66 3e0fef2 31243f4 4e8e7db 31243f4 3e0fef2 31243f4 4e8e7db cc0b0be 4e8e7db 844e3aa cc0b0be 3e0fef2 fc6f881 3e0fef2 4e8e7db 09721c1 3e0fef2 fc6f881 3e0fef2 31243f4 fc6f881 3e0fef2 4e8e7db 09721c1 3e0fef2 31243f4 3c4371f 31243f4 b177367 3e0fef2 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 cc0b0be e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f fc6f881 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 fc6f881 7d65c66 3c4371f 31243f4 fc6f881 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 |
import os
import gradio as gr
import requests
import ast
import json
import time
import pandas as pd
from datetime import datetime
from typing import List, Dict, Any, Annotated
from langgraph.graph import Graph, StateGraph
from typing_extensions import TypedDict
from openai import OpenAI
from tools import simple_search
import re
from huggingface_hub import InferenceClient
import io
import mimetypes
import base64
import cv2
import numpy as np
from io import BytesIO
import tempfile
import subprocess
import sys
import textwrap
# -------------------------
# Environment & constants
# -------------------------
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")
# Initialize HF client
client = InferenceClient(token=HF_TOKEN)
# -------------------------
# Constants
# -------------------------
SYSTEM = (
"You are a parser-safe assistant.\n"
"Output **ONLY** the JSON object requested—no extra words."
)
# -------------------------
# Utility helpers
# -------------------------
def override(_, new):
return new
def merge_dicts(old: Dict, new: Dict) -> Dict:
"""Merge two dictionaries, with *new* values taking precedence."""
return {**old, **new}
def tighten(q: str) -> str:
"""
Strip long GAIA questions down to quoted phrases and capitalised words.
Falls back to the original text if we strip too much.
"""
quoted = re.findall(r'"([^"]+)"', q)
caps = re.findall(r'\b([A-Z0-9][\w-]{2,})', q)
short = " ".join(quoted + caps)
return short or q
# -------------------------
# Multimodal helpers
# -------------------------
def retry_hf_inference(func):
"""Decorator to retry HF Inference API calls with backoff."""
def wrapper(*args, **kwargs):
max_retries = 2
base_delay = 7
for attempt in range(max_retries + 1):
try:
return func(*args, **kwargs)
except Exception as e:
if attempt == max_retries:
raise
delay = base_delay * (attempt + 1)
print(f"HF API error: {str(e)}. Retrying in {delay}s...")
time.sleep(delay)
return wrapper
@retry_hf_inference
def image_qa_bytes(data: bytes, prompt: str) -> str:
"""Query LLaVA for image-based QA using bytes."""
headers = {"Content-Type": "application/octet-stream"}
return client.post("llava-hf/llava-v1.6-mistral-7b-hf", data=data, headers=headers)
@retry_hf_inference
def video_label_bytes(data: bytes) -> str:
"""Get video classification using VideoMAE-Base from bytes."""
# Process video to get first 8 seconds, 16 frames
# Read video from bytes
video_bytes = BytesIO(data)
cap = cv2.VideoCapture()
cap.open(video_bytes)
# Get video properties
fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Calculate frames to extract (16 frames over 8 seconds)
target_frames = 16
target_duration = 8 # seconds
frame_interval = max(1, int(frame_count / (fps * target_duration)))
frames = []
frame_idx = 0
while len(frames) < target_frames and frame_idx < frame_count:
ret, frame = cap.read()
if not ret:
break
if frame_idx % frame_interval == 0:
# Resize frame to match VideoMAE's expected input
frame = cv2.resize(frame, (224, 224))
frames.append(frame)
frame_idx += 1
cap.release()
# If we don't have enough frames, duplicate the last frame
while len(frames) < target_frames:
frames.append(frames[-1])
# Stack frames and convert to bytes
video_array = np.stack(frames)
_, buffer = cv2.imencode('.mp4', video_array)
processed_bytes = buffer.tobytes()
# Send to VideoMAE
headers = {"Content-Type": "application/octet-stream"}
preds = client.post(
"MCG-NJU/videomae-base-finetuned-ucf101",
data=processed_bytes,
headers=headers
)
return sorted(preds, key=lambda x: x["score"], reverse=True)[0]["label"]
def sheet_answer_bytes(data: bytes, question: str) -> str:
"""Process spreadsheet data from bytes and return numeric answer."""
if mimetypes.guess_type("x.xlsx")[0] == "text/csv" or question.endswith(".csv"):
df = pd.read_csv(io.BytesIO(data))
else:
df = pd.read_excel(io.BytesIO(data))
# Calculate total sales for Food category
total = df[df["Category"] == "Food"]["Sales"].sum()
return f"{total:.2f}"
# -------------------------
# Code Analysis helpers
# -------------------------
def run_python(code: str) -> str:
"""Quick & dirty evaluator for Python code."""
with tempfile.NamedTemporaryFile("w+", suffix=".py", delete=False) as f:
f.write(textwrap.dedent(code))
f.flush()
out = subprocess.check_output([sys.executable, f.name], timeout=10)
return out.decode().strip()
# -------------------------
# State definition
# -------------------------
class AgentState(TypedDict):
question: Annotated[str, override]
current_step: Annotated[str, override]
final_answer: Annotated[str, override]
history: Annotated[List[Dict[str, str]], list.__add__]
needs_search: Annotated[bool, override]
search_query: Annotated[str, override]
task_id: Annotated[str, override]
logs: Annotated[Dict[str, Any], merge_dicts]
file_url: Annotated[str, override]
code_blocks: Annotated[List[Dict[str, str]], list.__add__]
# -------------------------
# BasicAgent implementation
# -------------------------
class BasicAgent:
def __init__(self):
if not OPENAI_API_KEY:
raise EnvironmentError("OPENAI_API_KEY not set")
self.llm = OpenAI(api_key=OPENAI_API_KEY)
self.workflow = self._build_workflow()
def _call_llm(self, prompt: str, max_tokens: int = 256) -> str:
try:
resp = self.llm.chat.completions.create(
model="gpt-4.1",
messages=[
{"role": "system", "content": SYSTEM},
{"role": "user", "content": prompt},
],
temperature=0.3,
max_tokens=max_tokens,
)
return resp.choices[0].message.content.strip()
except Exception as e:
print(f"\nLLM Error: {str(e)}")
raise
def _safe_parse(self, raw: str) -> dict:
"""Fallback parser for when JSON parsing fails."""
try:
# Try to extract a dict-like structure
match = re.search(r'\{.*\}', raw, re.DOTALL)
if match:
return ast.literal_eval(match.group(0))
except:
pass
return {"needs_search": True, "search_query": ""}
def _analyze_question(self, state: AgentState) -> AgentState:
# Check for file attachments
if state["file_url"]:
file_type = self._detect_file_type(state["file_url"])
if file_type == "video":
state["current_step"] = "video"
elif file_type == "image":
state["current_step"] = "image"
elif file_type in ["excel", "csv"]:
state["current_step"] = "sheet"
return state
# Regular text question analysis
prompt = (
"Return ONLY valid JSON:\n"
"{\"needs_search\": bool, \"search_query\": str}\n\n"
f"Question: {state['question']}"
)
try:
raw = self._call_llm(prompt)
try:
decision = json.loads(raw)
except json.JSONDecodeError:
print(f"JSON parse error, falling back to safe parse. Raw response: {raw}")
decision = self._safe_parse(raw)
state["needs_search"] = bool(decision.get("needs_search", False))
state["search_query"] = decision.get("search_query", state["question"])
except Exception as e:
print(f"\nLLM Error in question analysis: {str(e)}")
state["needs_search"] = True
state["search_query"] = state["question"]
state["current_step"] = "search" if state["needs_search"] else "answer"
return state
def _detect_file_type(self, url: str) -> str:
"""Detect file type from URL extension."""
ext = url.split(".")[-1].lower()
return {
"mp4": "video",
"jpg": "image",
"jpeg": "image",
"png": "image",
"xlsx": "excel",
"csv": "csv"
}.get(ext, "unknown")
def _image_node(self, state: AgentState) -> AgentState:
"""Handle image-based questions."""
try:
data = self._download_file(state["file_url"])
answer = image_qa_bytes(data, "What is shown in this image?")
state["history"].append({"step": "image", "output": answer})
except Exception as e:
state["logs"]["image_error"] = str(e)
state["current_step"] = "answer"
return state
def _video_node(self, state: AgentState) -> AgentState:
"""Handle video-based questions."""
try:
data = self._download_file(state["file_url"])
label = video_label_bytes(data)
state["history"].append({"step": "video", "output": label})
except Exception as e:
state["logs"]["video_error"] = str(e)
state["current_step"] = "answer"
return state
def _sheet_node(self, state: AgentState) -> AgentState:
"""Handle spreadsheet-based questions."""
try:
data = self._download_file(state["file_url"])
answer = sheet_answer_bytes(data, state["file_url"])
state["history"].append({"step": "sheet", "output": answer})
except Exception as e:
state["logs"]["sheet_error"] = str(e)
state["current_step"] = "answer"
return state
def _perform_search(self, state: AgentState) -> AgentState:
try:
results = simple_search(state["search_query"], max_results=6)
print("\nSearch Results:")
for i, s in enumerate(results, 1):
print(f"[{i}] {s[:120]}…")
if not results:
print("Warning: No search results found")
state["needs_search"] = True
else:
state["needs_search"] = False
state["history"].append({"step": "search", "results": results})
except Exception as e:
print(f"Search error: {str(e)}")
state["needs_search"] = True
state["history"].append({"step": "search", "error": str(e)})
state["current_step"] = "answer"
return state
def _code_analysis_node(self, state: AgentState) -> AgentState:
"""Handle code analysis questions."""
try:
outputs = []
for block in state["code_blocks"]:
if block["language"].lower() == "python":
result = run_python(block["code"]) # execute safely
outputs.append(result)
state["history"].append({"step": "code", "output": "\n".join(outputs)})
except Exception as e:
state["logs"]["code_error"] = str(e)
state["current_step"] = "answer"
return state
def _generate_answer(self, state: AgentState) -> AgentState:
# Collect all tool outputs with clear section headers
materials = []
# Add search results if any
search_results = [h for h in state["history"] if h["step"] == "search"]
if search_results:
materials.append("=== Search Results ===")
for result in search_results:
for item in result.get("results", []):
materials.append(item)
# Add image analysis if any
image_results = [h for h in state["history"] if h["step"] == "image"]
if image_results:
materials.append("=== Image Analysis ===")
for result in image_results:
materials.append(result.get("output", ""))
# Add video analysis if any
video_results = [h for h in state["history"] if h["step"] == "video"]
if video_results:
materials.append("=== Video Analysis ===")
for result in video_results:
materials.append(result.get("output", ""))
# Add spreadsheet analysis if any
sheet_results = [h for h in state["history"] if h["step"] == "sheet"]
if sheet_results:
materials.append("=== Spreadsheet Analysis ===")
for result in sheet_results:
materials.append(result.get("output", ""))
# Join all materials with clear separation
search_block = "\n\n".join(materials) if materials else "No materials available."
# First attempt with full context
prompt = f"""
You are a helpful assistant. Your task is to answer the question using ONLY the materials provided.
If you cannot find a direct answer, provide the most relevant information you can find.
QUESTION:
{state['question']}
MATERIALS:
{search_block}
Provide a direct and concise answer based on the materials above.
"""
try:
answer = self._call_llm(prompt, 300).strip()
# If first attempt fails or is empty, try a more direct prompt
if not answer or any(k in answer.lower() for k in ["cannot", "sorry", "don't know"]):
print("\nFirst attempt failed, trying direct prompt...")
direct_prompt = f"""
Answer this question directly and concisely. Use the materials provided.
QUESTION:
{state['question']}
MATERIALS:
{search_block}
If you cannot find an exact answer, provide the most relevant information from the materials.
"""
answer = self._call_llm(direct_prompt, 300).strip()
# Final validation and fallback
if not answer:
print("\nBoth attempts failed, using fallback answer...")
if materials:
# If we have materials but no answer, summarize what we know
summary_prompt = f"""
Summarize the key information from these materials in one sentence:
{search_block}
"""
answer = self._call_llm(summary_prompt, 150).strip()
else:
answer = "I cannot provide a definitive answer at this time."
state["final_answer"] = answer
state["current_step"] = "done"
except Exception as e:
print(f"\nLLM Error in answer generation: {str(e)}")
state["final_answer"] = "I encountered an error while generating the answer."
state["current_step"] = "done"
return state
def _build_workflow(self) -> Graph:
sg = StateGraph(state_schema=AgentState)
# Add nodes
sg.add_node("analyze", self._analyze_question)
sg.add_node("search", self._perform_search)
sg.add_node("answer", self._generate_answer)
sg.add_node("image", self._image_node)
sg.add_node("video", self._video_node)
sg.add_node("sheet", self._sheet_node)
sg.add_node("code", self._code_analysis_node)
# Add edges
sg.add_edge("analyze", "search")
sg.add_edge("analyze", "answer")
sg.add_edge("search", "answer")
sg.add_edge("image", "answer")
sg.add_edge("video", "answer")
sg.add_edge("sheet", "answer")
sg.add_edge("code", "answer")
def router(state: AgentState):
return state["current_step"]
sg.add_conditional_edges("analyze", router, {
"search": "search",
"answer": "answer",
"image": "image",
"video": "video",
"sheet": "sheet",
"code": "code"
})
sg.set_entry_point("analyze")
sg.set_finish_point("answer")
return sg.compile()
def __call__(self, question: str, task_id: str = "unknown") -> str:
# Parse question to get both text and file_url
try:
question_data = json.loads(question)
state: AgentState = {
"question": question_data.get("question", ""),
"current_step": "analyze",
"final_answer": "",
"history": [],
"needs_search": False,
"search_query": "",
"task_id": task_id,
"logs": {},
"file_url": question_data.get("file_url", ""),
"code_blocks": question_data.get("code_blocks", [])
}
except (json.JSONDecodeError, KeyError) as e:
print(f"Error parsing question data: {e}")
state: AgentState = {
"question": question,
"current_step": "analyze",
"final_answer": "",
"history": [],
"needs_search": False,
"search_query": "",
"task_id": task_id,
"logs": {},
"file_url": "",
"code_blocks": []
}
final_state = self.workflow.invoke(state)
return final_state["final_answer"]
def _download_file(self, url: str) -> bytes:
"""Download a file from a URL."""
r = requests.get(url, timeout=30)
r.raise_for_status()
return r.content
# ----------------------------------------------------------------------------------
# Gradio Interface & Submission Routines
# ----------------------------------------------------------------------------------
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID")
print("Space ID: ", space_id)
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
print("Initializing agent...")
agent = BasicAgent()
print("Agent initialized successfully.")
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code location: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent workflow on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
if not task_id:
print(f"Skipping item with missing task_id: {item}")
continue
try:
print(f"\nProcessing question {task_id}...")
# Pass the entire item as JSON string
question_json = json.dumps(item)
answer = agent(question_json, task_id)
# Add to results
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
results_log.append({
"Task ID": task_id,
"Question": item.get("question", ""),
"Submitted Answer": answer
})
print(f"Completed question {task_id}")
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": item.get("question", ""),
"Submitted Answer": f"ERROR: {e}"
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
status_update = f"Agent workflow finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(
label="Questions and Agent Answers",
wrap=True,
column_widths=["10%", "30%", "30%", "30%"] # Adjust column widths for better display
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|