File size: 26,600 Bytes
10e9b7d
 
eccf8e4
29140cf
323f26e
fc6f881
 
323f26e
fc6f881
23a6007
9029749
fc6f881
622f2bb
3b2a7e8
cc1c674
 
 
 
4e8e7db
 
 
 
 
 
844e3aa
cc1c674
 
 
 
 
 
 
 
 
 
 
fc6f881
7eca316
 
 
 
 
 
 
 
 
fc6f881
 
 
9029749
fc6f881
 
9029749
fc6f881
 
 
 
2200521
 
 
 
 
 
 
 
 
 
fc6f881
cc1c674
fc6f881
a82796c
49d3a15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa8a2b0
4e8e7db
fa8a2b0
4e8e7db
cc1c674
49d3a15
fa8a2b0
4e8e7db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa8a2b0
 
4e8e7db
 
fa8a2b0
 
 
ebec9e2
fa8a2b0
844e3aa
cc1c674
 
 
 
844e3aa
 
 
 
323f26e
4e8e7db
 
 
 
 
 
 
844e3aa
4e8e7db
 
 
 
fc6f881
 
 
935cde9
defd4dc
9029749
 
 
fc6f881
 
9029749
a82796c
fc6f881
49d3a15
844e3aa
fc6f881
 
 
 
1c5f119
31243f4
 
34292b8
fc6f881
34292b8
fc6f881
 
 
e073c39
 
7eca316
e073c39
7eca316
e073c39
 
 
 
 
 
 
 
 
 
ffbc2d3
 
 
 
 
 
 
 
 
 
 
4beca24
e5ab611
 
 
 
 
 
 
 
 
ebc7e51
e073c39
8286288
 
ffbc2d3
 
8286288
 
 
b692f0c
ffbc2d3
 
 
 
 
 
8286288
 
b692f0c
 
d07b7a3
8286288
b692f0c
8286288
5854ce9
 
fa8a2b0
ebc7e51
 
fa8a2b0
 
 
 
 
 
 
 
8286288
cc1c674
 
29140cf
49d3a15
 
 
cc1c674
 
49d3a15
cc1c674
 
 
 
 
49d3a15
 
 
cc1c674
 
49d3a15
cc1c674
 
 
 
 
49d3a15
 
 
cc1c674
 
49d3a15
ebec9e2
 
fc6f881
4f114c3
e073c39
4f114c3
 
 
 
 
 
e073c39
4f114c3
 
 
 
 
 
 
 
 
 
e073c39
7dfd849
 
4e8e7db
 
 
844e3aa
 
 
 
 
 
4e8e7db
 
 
 
 
fc6f881
49d3a15
8286288
 
e5ab611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49d3a15
5e54175
d07b7a3
1805291
d07b7a3
 
1805291
cc1c674
1805291
 
cc1c674
1805291
 
c6c72f5
1805291
b692f0c
c6c72f5
b692f0c
d07b7a3
c6c72f5
d07b7a3
 
 
 
 
 
 
 
 
 
 
 
c6c72f5
d07b7a3
 
c6c72f5
d07b7a3
 
 
 
 
 
 
 
c6c72f5
d07b7a3
 
b692f0c
 
 
 
 
 
 
 
 
ebec9e2
 
fc6f881
 
cc1c674
e073c39
fc6f881
 
 
cc1c674
 
 
4e8e7db
fc6f881
cc1c674
fc6f881
 
e073c39
cc1c674
 
 
4e8e7db
fc6f881
 
 
 
cc1c674
 
 
 
 
4e8e7db
 
cc1c674
 
fc6f881
 
 
 
323f26e
844e3aa
e5ab611
 
844e3aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc6f881
 
 
8286288
 
ebc7e51
 
 
8286288
fc6f881
 
 
4021bf3
3e0fef2
31243f4
 
 
 
7d65c66
fc6f881
7e21665
7e4a06b
3e0fef2
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
3e0fef2
31243f4
fc6f881
31243f4
fc6f881
31243f4
3c4371f
31243f4
3e0fef2
 
36ed51a
3e0fef2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3e0fef2
 
31243f4
e80aab9
31243f4
 
3c4371f
3e0fef2
 
 
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3e0fef2
 
31243f4
 
4e8e7db
 
31243f4
3e0fef2
31243f4
4e8e7db
cc0b0be
4e8e7db
844e3aa
 
cc0b0be
3e0fef2
fc6f881
3e0fef2
 
4e8e7db
09721c1
3e0fef2
 
fc6f881
3e0fef2
31243f4
fc6f881
3e0fef2
 
4e8e7db
09721c1
3e0fef2
31243f4
 
3c4371f
31243f4
 
b177367
3e0fef2
 
 
 
 
 
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
cc0b0be
 
 
 
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
fc6f881
7d65c66
3c4371f
 
7d65c66
3c4371f
7d65c66
 
fc6f881
7d65c66
 
 
 
 
 
3c4371f
 
31243f4
fc6f881
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
import os
import gradio as gr
import requests
import ast
import json
import time
import pandas as pd
from datetime import datetime
from typing import List, Dict, Any, Annotated
from langgraph.graph import Graph, StateGraph
from typing_extensions import TypedDict
from openai import OpenAI
from tools import simple_search
import re
from huggingface_hub import InferenceClient
import io
import mimetypes
import base64
import cv2
import numpy as np
from io import BytesIO
import tempfile
import subprocess
import sys
import textwrap

# -------------------------
# Environment & constants
# -------------------------

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")

# Initialize HF client
client = InferenceClient(token=HF_TOKEN)

# -------------------------
# Constants
# -------------------------

SYSTEM = (
    "You are a parser-safe assistant.\n"
    "Output **ONLY** the JSON object requested—no extra words."
)

# -------------------------
# Utility helpers
# -------------------------

def override(_, new):
    return new

def merge_dicts(old: Dict, new: Dict) -> Dict:
    """Merge two dictionaries, with *new* values taking precedence."""
    return {**old, **new}

def tighten(q: str) -> str:
    """
    Strip long GAIA questions down to quoted phrases and capitalised words.
    Falls back to the original text if we strip too much.
    """
    quoted = re.findall(r'"([^"]+)"', q)
    caps   = re.findall(r'\b([A-Z0-9][\w-]{2,})', q)
    short  = " ".join(quoted + caps)
    return short or q

# -------------------------
# Multimodal helpers
# -------------------------

def retry_hf_inference(func):
    """Decorator to retry HF Inference API calls with backoff."""
    def wrapper(*args, **kwargs):
        max_retries = 2
        base_delay = 7
        
        for attempt in range(max_retries + 1):
            try:
                return func(*args, **kwargs)
            except Exception as e:
                if attempt == max_retries:
                    raise
                delay = base_delay * (attempt + 1)
                print(f"HF API error: {str(e)}. Retrying in {delay}s...")
                time.sleep(delay)
    return wrapper

@retry_hf_inference
def image_qa_bytes(data: bytes, prompt: str) -> str:
    """Query LLaVA for image-based QA using bytes."""
    headers = {"Content-Type": "application/octet-stream"}
    return client.post("llava-hf/llava-v1.6-mistral-7b-hf", data=data, headers=headers)

@retry_hf_inference
def video_label_bytes(data: bytes) -> str:
    """Get video classification using VideoMAE-Base from bytes."""
    # Process video to get first 8 seconds, 16 frames
    
    # Read video from bytes
    video_bytes = BytesIO(data)
    cap = cv2.VideoCapture()
    cap.open(video_bytes)
    
    # Get video properties
    fps = cap.get(cv2.CAP_PROP_FPS)
    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    
    # Calculate frames to extract (16 frames over 8 seconds)
    target_frames = 16
    target_duration = 8  # seconds
    frame_interval = max(1, int(frame_count / (fps * target_duration)))
    
    frames = []
    frame_idx = 0
    
    while len(frames) < target_frames and frame_idx < frame_count:
        ret, frame = cap.read()
        if not ret:
            break
            
        if frame_idx % frame_interval == 0:
            # Resize frame to match VideoMAE's expected input
            frame = cv2.resize(frame, (224, 224))
            frames.append(frame)
            
        frame_idx += 1
    
    cap.release()
    
    # If we don't have enough frames, duplicate the last frame
    while len(frames) < target_frames:
        frames.append(frames[-1])
    
    # Stack frames and convert to bytes
    video_array = np.stack(frames)
    _, buffer = cv2.imencode('.mp4', video_array)
    processed_bytes = buffer.tobytes()
    
    # Send to VideoMAE
    headers = {"Content-Type": "application/octet-stream"}
    preds = client.post(
        "MCG-NJU/videomae-base-finetuned-ucf101", 
        data=processed_bytes,
        headers=headers
    )
    return sorted(preds, key=lambda x: x["score"], reverse=True)[0]["label"]

def sheet_answer_bytes(data: bytes, question: str) -> str:
    """Process spreadsheet data from bytes and return numeric answer."""
    if mimetypes.guess_type("x.xlsx")[0] == "text/csv" or question.endswith(".csv"):
        df = pd.read_csv(io.BytesIO(data))
    else:
        df = pd.read_excel(io.BytesIO(data))
    
    # Calculate total sales for Food category
    total = df[df["Category"] == "Food"]["Sales"].sum()
    return f"{total:.2f}"

# -------------------------
# Code Analysis helpers
# -------------------------

def run_python(code: str) -> str:
    """Quick & dirty evaluator for Python code."""
    with tempfile.NamedTemporaryFile("w+", suffix=".py", delete=False) as f:
        f.write(textwrap.dedent(code))
        f.flush()
        out = subprocess.check_output([sys.executable, f.name], timeout=10)
    return out.decode().strip()

# -------------------------
# State definition
# -------------------------

class AgentState(TypedDict):
    question: Annotated[str, override]
    current_step: Annotated[str, override]
    final_answer: Annotated[str, override]
    history: Annotated[List[Dict[str, str]], list.__add__]
    needs_search: Annotated[bool, override]
    search_query: Annotated[str, override]
    task_id: Annotated[str, override]
    logs: Annotated[Dict[str, Any], merge_dicts]
    file_url: Annotated[str, override]
    code_blocks: Annotated[List[Dict[str, str]], list.__add__]

# -------------------------
# BasicAgent implementation
# -------------------------

class BasicAgent:
    def __init__(self):
        if not OPENAI_API_KEY:
            raise EnvironmentError("OPENAI_API_KEY not set")
        self.llm = OpenAI(api_key=OPENAI_API_KEY)
        self.workflow = self._build_workflow()

    def _call_llm(self, prompt: str, max_tokens: int = 256) -> str:
        try:
            resp = self.llm.chat.completions.create(
                model="gpt-4.1",
                messages=[
                    {"role": "system", "content": SYSTEM},
                    {"role": "user", "content": prompt},
                ],
                temperature=0.3,
                max_tokens=max_tokens,
            )
            return resp.choices[0].message.content.strip()
        except Exception as e:
            print(f"\nLLM Error: {str(e)}")
            raise

    def _safe_parse(self, raw: str) -> dict:
        """Fallback parser for when JSON parsing fails."""
        try:
            # Try to extract a dict-like structure
            match = re.search(r'\{.*\}', raw, re.DOTALL)
            if match:
                return ast.literal_eval(match.group(0))
        except:
            pass
        return {"needs_search": True, "search_query": ""}

    def _analyze_question(self, state: AgentState) -> AgentState:
        # Check for file attachments
        if state["file_url"]:
            file_type = self._detect_file_type(state["file_url"])
            if file_type == "video":
                state["current_step"] = "video"
            elif file_type == "image":
                state["current_step"] = "image"
            elif file_type in ["excel", "csv"]:
                state["current_step"] = "sheet"
            return state

        # Regular text question analysis
        prompt = (
            "Return ONLY valid JSON:\n"
            "{\"needs_search\": bool, \"search_query\": str}\n\n"
            f"Question: {state['question']}"
        )
        try:
            raw = self._call_llm(prompt)
            try:
                decision = json.loads(raw)
            except json.JSONDecodeError:
                print(f"JSON parse error, falling back to safe parse. Raw response: {raw}")
                decision = self._safe_parse(raw)
            
            state["needs_search"] = bool(decision.get("needs_search", False))
            state["search_query"] = decision.get("search_query", state["question"])
        except Exception as e:
            print(f"\nLLM Error in question analysis: {str(e)}")
            state["needs_search"] = True
            state["search_query"] = state["question"]
            
        state["current_step"] = "search" if state["needs_search"] else "answer"
        return state

    def _detect_file_type(self, url: str) -> str:
        """Detect file type from URL extension."""
        ext = url.split(".")[-1].lower()
        return {
            "mp4": "video",
            "jpg": "image",
            "jpeg": "image",
            "png": "image",
            "xlsx": "excel",
            "csv": "csv"
        }.get(ext, "unknown")

    def _image_node(self, state: AgentState) -> AgentState:
        """Handle image-based questions."""
        try:
            data = self._download_file(state["file_url"])
            answer = image_qa_bytes(data, "What is shown in this image?")
            state["history"].append({"step": "image", "output": answer})
        except Exception as e:
            state["logs"]["image_error"] = str(e)
        state["current_step"] = "answer"
        return state

    def _video_node(self, state: AgentState) -> AgentState:
        """Handle video-based questions."""
        try:
            data = self._download_file(state["file_url"])
            label = video_label_bytes(data)
            state["history"].append({"step": "video", "output": label})
        except Exception as e:
            state["logs"]["video_error"] = str(e)
        state["current_step"] = "answer"
        return state

    def _sheet_node(self, state: AgentState) -> AgentState:
        """Handle spreadsheet-based questions."""
        try:
            data = self._download_file(state["file_url"])
            answer = sheet_answer_bytes(data, state["file_url"])
            state["history"].append({"step": "sheet", "output": answer})
        except Exception as e:
            state["logs"]["sheet_error"] = str(e)
        state["current_step"] = "answer"
        return state

    def _perform_search(self, state: AgentState) -> AgentState:
        try:
            results = simple_search(state["search_query"], max_results=6)
            print("\nSearch Results:")
            for i, s in enumerate(results, 1):
                print(f"[{i}] {s[:120]}…")
            
            if not results:
                print("Warning: No search results found")
                state["needs_search"] = True
            else:
                state["needs_search"] = False
                
            state["history"].append({"step": "search", "results": results})
            
        except Exception as e:
            print(f"Search error: {str(e)}")
            state["needs_search"] = True
            state["history"].append({"step": "search", "error": str(e)})
            
        state["current_step"] = "answer"
        return state

    def _code_analysis_node(self, state: AgentState) -> AgentState:
        """Handle code analysis questions."""
        try:
            outputs = []
            for block in state["code_blocks"]:
                if block["language"].lower() == "python":
                    result = run_python(block["code"])   # execute safely
                    outputs.append(result)
            state["history"].append({"step": "code", "output": "\n".join(outputs)})
        except Exception as e:
            state["logs"]["code_error"] = str(e)
        state["current_step"] = "answer"
        return state

    def _generate_answer(self, state: AgentState) -> AgentState:
        # Collect all tool outputs with clear section headers
        materials = []
        
        # Add search results if any
        search_results = [h for h in state["history"] if h["step"] == "search"]
        if search_results:
            materials.append("=== Search Results ===")
            for result in search_results:
                for item in result.get("results", []):
                    materials.append(item)
        
        # Add image analysis if any
        image_results = [h for h in state["history"] if h["step"] == "image"]
        if image_results:
            materials.append("=== Image Analysis ===")
            for result in image_results:
                materials.append(result.get("output", ""))
        
        # Add video analysis if any
        video_results = [h for h in state["history"] if h["step"] == "video"]
        if video_results:
            materials.append("=== Video Analysis ===")
            for result in video_results:
                materials.append(result.get("output", ""))
        
        # Add spreadsheet analysis if any
        sheet_results = [h for h in state["history"] if h["step"] == "sheet"]
        if sheet_results:
            materials.append("=== Spreadsheet Analysis ===")
            for result in sheet_results:
                materials.append(result.get("output", ""))
        
        # Join all materials with clear separation
        search_block = "\n\n".join(materials) if materials else "No materials available."
        
        # First attempt with full context
        prompt = f"""
You are a helpful assistant. Your task is to answer the question using ONLY the materials provided.
If you cannot find a direct answer, provide the most relevant information you can find.

QUESTION:
{state['question']}

MATERIALS:
{search_block}

Provide a direct and concise answer based on the materials above.
"""
        try:
            answer = self._call_llm(prompt, 300).strip()
            
            # If first attempt fails or is empty, try a more direct prompt
            if not answer or any(k in answer.lower() for k in ["cannot", "sorry", "don't know"]):
                print("\nFirst attempt failed, trying direct prompt...")
                direct_prompt = f"""
Answer this question directly and concisely. Use the materials provided.

QUESTION:
{state['question']}

MATERIALS:
{search_block}

If you cannot find an exact answer, provide the most relevant information from the materials.
"""
                answer = self._call_llm(direct_prompt, 300).strip()
            
            # Final validation and fallback
            if not answer:
                print("\nBoth attempts failed, using fallback answer...")
                if materials:
                    # If we have materials but no answer, summarize what we know
                    summary_prompt = f"""
Summarize the key information from these materials in one sentence:

{search_block}
"""
                    answer = self._call_llm(summary_prompt, 150).strip()
                else:
                    answer = "I cannot provide a definitive answer at this time."
            
            state["final_answer"] = answer
            state["current_step"] = "done"
            
        except Exception as e:
            print(f"\nLLM Error in answer generation: {str(e)}")
            state["final_answer"] = "I encountered an error while generating the answer."
            state["current_step"] = "done"
            
        return state

    def _build_workflow(self) -> Graph:
        sg = StateGraph(state_schema=AgentState)
        
        # Add nodes
        sg.add_node("analyze", self._analyze_question)
        sg.add_node("search", self._perform_search)
        sg.add_node("answer", self._generate_answer)
        sg.add_node("image", self._image_node)
        sg.add_node("video", self._video_node)
        sg.add_node("sheet", self._sheet_node)
        sg.add_node("code", self._code_analysis_node)

        # Add edges
        sg.add_edge("analyze", "search")
        sg.add_edge("analyze", "answer")
        sg.add_edge("search", "answer")
        sg.add_edge("image", "answer")
        sg.add_edge("video", "answer")
        sg.add_edge("sheet", "answer")
        sg.add_edge("code", "answer")

        def router(state: AgentState):
            return state["current_step"]

        sg.add_conditional_edges("analyze", router, {
            "search": "search", 
            "answer": "answer",
            "image": "image",
            "video": "video",
            "sheet": "sheet",
            "code": "code"
        })
        
        sg.set_entry_point("analyze")
        sg.set_finish_point("answer")
        return sg.compile()

    def __call__(self, question: str, task_id: str = "unknown") -> str:
        # Parse question to get both text and file_url
        try:
            question_data = json.loads(question)
            state: AgentState = {
                "question": question_data.get("question", ""),
                "current_step": "analyze",
                "final_answer": "",
                "history": [],
                "needs_search": False,
                "search_query": "",
                "task_id": task_id,
                "logs": {},
                "file_url": question_data.get("file_url", ""),
                "code_blocks": question_data.get("code_blocks", [])
            }
        except (json.JSONDecodeError, KeyError) as e:
            print(f"Error parsing question data: {e}")
            state: AgentState = {
                "question": question,
                "current_step": "analyze",
                "final_answer": "",
                "history": [],
                "needs_search": False,
                "search_query": "",
                "task_id": task_id,
                "logs": {},
                "file_url": "",
                "code_blocks": []
            }
        
        final_state = self.workflow.invoke(state)
        return final_state["final_answer"]

    def _download_file(self, url: str) -> bytes:
        """Download a file from a URL."""
        r = requests.get(url, timeout=30)
        r.raise_for_status()
        return r.content

# ----------------------------------------------------------------------------------
# Gradio Interface & Submission Routines
# ----------------------------------------------------------------------------------

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")
    print("Space ID: ", space_id)
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        print("Initializing agent...")
        agent = BasicAgent()
        print("Agent initialized successfully.")
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    # In the case of an app running as a hugging Face space, this link points toward your codebase
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(f"Agent code location: {agent_code}")

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent workflow on {len(questions_data)} questions...")
    
    for item in questions_data:
        task_id = item.get("task_id")
        if not task_id:
            print(f"Skipping item with missing task_id: {item}")
            continue

        try:
            print(f"\nProcessing question {task_id}...")
            
            # Pass the entire item as JSON string
            question_json = json.dumps(item)
            answer = agent(question_json, task_id)
            
            # Add to results
            answers_payload.append({"task_id": task_id, "submitted_answer": answer})
            results_log.append({
                "Task ID": task_id,
                "Question": item.get("question", ""),
                "Submitted Answer": answer
            })
            
            print(f"Completed question {task_id}")
            
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({
                "Task ID": task_id,
                "Question": item.get("question", ""),
                "Submitted Answer": f"ERROR: {e}"
            })

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }
    status_update = f"Agent workflow finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(
        label="Questions and Agent Answers", 
        wrap=True,
        column_widths=["10%", "30%", "30%", "30%"]  # Adjust column widths for better display
    )

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)