|
import os |
|
import gradio as gr |
|
import requests |
|
import inspect |
|
import pandas as pd |
|
import ast |
|
import operator |
|
import time |
|
import json |
|
from datetime import datetime |
|
from typing import List, Dict, Any, Optional, Annotated |
|
from langgraph.graph import Graph, StateGraph |
|
from langgraph.prebuilt import ToolNode |
|
from tools import simple_search |
|
from openai import OpenAI |
|
from typing_extensions import TypedDict |
|
|
|
def override(_, new): return new |
|
|
|
print("trial") |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
|
|
|
|
LOGS_DIR = "question_logs" |
|
os.makedirs(LOGS_DIR, exist_ok=True) |
|
|
|
def log_to_file(task_id: str, question: str, log_data: Dict[str, Any]): |
|
"""Store logs for a question in a JSON file.""" |
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") |
|
filename = f"{LOGS_DIR}/question_{task_id}_{timestamp}.json" |
|
|
|
log_entry = { |
|
"task_id": task_id, |
|
"question": question, |
|
"timestamp": timestamp, |
|
"logs": log_data |
|
} |
|
|
|
with open(filename, 'w', encoding='utf-8') as f: |
|
json.dump(log_entry, f, indent=2, ensure_ascii=False) |
|
|
|
print(f"Logs saved to {filename}") |
|
|
|
class AgentState(TypedDict): |
|
question: Annotated[str, override] |
|
current_step: Annotated[str, override] |
|
tool_output: Annotated[str, override] |
|
final_answer: Annotated[str, override] |
|
history: Annotated[List[Dict[str, str]], operator.add] |
|
needs_more_info: Annotated[bool, override] |
|
search_query: Annotated[str, override] |
|
task_id: Annotated[str, override] |
|
logs: Annotated[Dict[str, Any], operator.add] |
|
|
|
class BasicAgent: |
|
def __init__(self): |
|
print("Initializing BasicAgent with OpenAI...") |
|
if not OPENAI_API_KEY: |
|
raise ValueError("OPENAI_API_KEY environment variable not set. Please set your OpenAI API key.") |
|
|
|
|
|
self.llm = OpenAI(api_key=OPENAI_API_KEY) |
|
|
|
|
|
print("Creating workflow variable") |
|
self.workflow = self._create_workflow() |
|
print("BasicAgent initialization complete.") |
|
|
|
def _call_llm_api(self, prompt: str) -> str: |
|
"""Call the model and return the raw text output.""" |
|
try: |
|
print("=== Sending prompt ===") |
|
print(prompt[:500]) |
|
response = self.llm.chat.completions.create( |
|
model="gpt-4.1-nano", |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful AI assistant that provides clear and concise answers."}, |
|
{"role": "user", "content": prompt} |
|
], |
|
max_tokens=200, |
|
temperature=0.7, |
|
top_p=0.95, |
|
frequency_penalty=0.1 |
|
) |
|
print("=== Received response ===") |
|
response_text = response.choices[0].message.content |
|
print(response_text) |
|
return response_text |
|
except Exception as e: |
|
print(f"Error calling LLM API: {e}") |
|
return f"Error getting response from LLM: {str(e)}" |
|
|
|
def _create_workflow(self) -> Graph: |
|
"""Create the agent workflow using LangGraph.""" |
|
|
|
print("Creating Stategraph : error happens here?") |
|
workflow = StateGraph(state_schema=AgentState) |
|
print("Stategraph created") |
|
|
|
workflow.add_node("analyze", self._analyze_question) |
|
workflow.add_node("search", self._use_search) |
|
workflow.add_node("generate_answer", self._generate_final_answer) |
|
|
|
|
|
workflow.add_edge("analyze", "search") |
|
workflow.add_edge("analyze", "generate_answer") |
|
workflow.add_edge("search", "generate_answer") |
|
|
|
|
|
def router(state: AgentState) -> str: |
|
if state["current_step"] == 'search': |
|
return 'search' |
|
elif state["current_step"] == 'final_answer': |
|
return 'generate_answer' |
|
return 'analyze' |
|
|
|
workflow.add_conditional_edges( |
|
"analyze", |
|
router, |
|
{ |
|
"search": "search", |
|
"final_answer": "generate_answer" |
|
} |
|
) |
|
|
|
|
|
workflow.set_entry_point("analyze") |
|
workflow.set_finish_point("generate_answer") |
|
|
|
return workflow.compile() |
|
|
|
def _analyze_question(self, state: AgentState) -> AgentState: |
|
"""Analyze the question and determine the next step.""" |
|
prompt = f"""Analyze this question and determine what needs to be done: {state['question']} |
|
|
|
Return ONLY a Python dictionary in this exact format, with no other text or explanation: |
|
{{ |
|
"needs_search": true/false, |
|
"search_query": "query if needed" |
|
}}""" |
|
|
|
try: |
|
llm_response = self._call_llm_api(prompt) |
|
print("\n=== Analyze Question LLM Response ===") |
|
print(f"Input: {state['question']}") |
|
print(f"LLM Response: {llm_response}") |
|
|
|
|
|
state["logs"]["analyze"] = { |
|
"prompt": prompt, |
|
"response": llm_response, |
|
"timestamp": datetime.now().isoformat() |
|
} |
|
|
|
analysis = ast.literal_eval(llm_response) |
|
state["needs_more_info"] = analysis.get('needs_search', False) |
|
state["search_query"] = analysis.get('search_query', '') |
|
|
|
if analysis.get('needs_search', False): |
|
state["current_step"] = 'search' |
|
else: |
|
state["current_step"] = 'final_answer' |
|
except (ValueError, SyntaxError) as e: |
|
print(f"Error parsing LLM response: {e}") |
|
|
|
state["needs_more_info"] = True |
|
state["search_query"] = state["question"] |
|
state["current_step"] = 'search' |
|
|
|
|
|
state["logs"]["analyze_error"] = { |
|
"error": str(e), |
|
"timestamp": datetime.now().isoformat() |
|
} |
|
|
|
return state |
|
|
|
def _use_search(self, state: AgentState) -> AgentState: |
|
"""Use the search tool.""" |
|
time.sleep(2) |
|
|
|
try: |
|
print("\n=== Search Tool ===") |
|
print(f"Search Query: {state['search_query']}") |
|
|
|
|
|
search_results = simple_search( |
|
query=state["search_query"], |
|
max_results=3 |
|
) |
|
|
|
print("Search Results:") |
|
for i, result in enumerate(search_results, 1): |
|
print(f"{i}. {result}") |
|
|
|
|
|
state["logs"]["search"] = { |
|
"query": state["search_query"], |
|
"results": search_results, |
|
"timestamp": datetime.now().isoformat() |
|
} |
|
|
|
state["history"].append({ |
|
'step': 'search', |
|
'query': state["search_query"], |
|
'results': search_results |
|
}) |
|
state["needs_more_info"] = False |
|
state["current_step"] = 'final_answer' |
|
except Exception as e: |
|
print(f"Search Error: {e}") |
|
state["history"].append({ |
|
'step': 'search_error', |
|
'error': str(e) |
|
}) |
|
state["current_step"] = 'final_answer' |
|
|
|
|
|
state["logs"]["search_error"] = { |
|
"error": str(e), |
|
"timestamp": datetime.now().isoformat() |
|
} |
|
return state |
|
|
|
def _generate_final_answer(self, state: AgentState) -> AgentState: |
|
"""Generate the final answer based on all gathered information.""" |
|
history_str = "\n".join([f"{h['step']}: {h.get('output', h.get('results', h.get('error', '')))}" |
|
for h in state["history"]]) |
|
|
|
prompt = f"""Question: {state['question']} |
|
|
|
History of steps taken: |
|
{history_str} |
|
|
|
Return ONLY the direct answer to the question. Do not include any explanations, introductions, or formatting. Just the answer.""" |
|
|
|
print("\n=== Generate Final Answer ===") |
|
print(f"Question: {state['question']}") |
|
print("History:") |
|
print(history_str) |
|
|
|
llm_response = self._call_llm_api(prompt) |
|
print("\nFinal Answer:") |
|
print(llm_response) |
|
|
|
|
|
state["logs"]["final_answer"] = { |
|
"prompt": prompt, |
|
"response": llm_response, |
|
"history": history_str, |
|
"timestamp": datetime.now().isoformat() |
|
} |
|
|
|
state["final_answer"] = llm_response |
|
return state |
|
|
|
def __call__(self, question: str, task_id: str = "unknown") -> str: |
|
"""Process a question through the agent workflow.""" |
|
print(f"Agent received question: {question[:50]}...") |
|
|
|
try: |
|
|
|
initial_state: AgentState = { |
|
"question": question, |
|
"current_step": "analyze", |
|
"tool_output": "", |
|
"final_answer": "", |
|
"history": [], |
|
"needs_more_info": False, |
|
"search_query": "", |
|
"task_id": task_id, |
|
"logs": {} |
|
} |
|
|
|
|
|
final_state = self.workflow.invoke(initial_state) |
|
|
|
|
|
log_to_file( |
|
task_id=final_state["task_id"], |
|
question=final_state["question"], |
|
log_data=final_state["logs"] |
|
) |
|
|
|
return final_state["final_answer"] |
|
|
|
except Exception as e: |
|
print(f"Error in agent processing: {e}") |
|
return f"I encountered an error while processing your question: {str(e)}" |
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
print("Space ID: ", space_id) |
|
if profile: |
|
username = f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
print("Initializing agent: trial ") |
|
agent = BasicAgent() |
|
print("Agent initialized successfully with workflow.") |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(f"Agent code location: {agent_code}") |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent workflow on {len(questions_data)} questions...") |
|
|
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
|
|
try: |
|
|
|
initial_state = { |
|
"question": question_text, |
|
"current_step": "analyze", |
|
"tool_output": "", |
|
"final_answer": "", |
|
"history": [], |
|
"needs_more_info": False, |
|
"search_query": "", |
|
"task_id": task_id, |
|
"logs": {} |
|
} |
|
|
|
|
|
print(f"\nProcessing question {task_id}: {question_text[:50]}...") |
|
final_state = agent.workflow.invoke(initial_state) |
|
|
|
|
|
workflow_history = "\n".join([ |
|
f"Step: {h['step']}\n" + |
|
f"Input: {h.get('input', h.get('query', ''))}\n" + |
|
f"Output: {h.get('output', h.get('results', h.get('error', '')))}" |
|
for h in final_state["history"] |
|
]) |
|
|
|
|
|
submitted_answer = final_state["final_answer"] |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Submitted Answer": submitted_answer, |
|
"Workflow History": workflow_history |
|
}) |
|
|
|
print(f"Completed question {task_id} with {len(final_state['history'])} workflow steps") |
|
|
|
except Exception as e: |
|
print(f"Error running agent workflow on task {task_id}: {e}") |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Submitted Answer": f"WORKFLOW ERROR: {e}", |
|
"Workflow History": "Error occurred before workflow completion" |
|
}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = { |
|
"username": username.strip(), |
|
"agent_code": agent_code, |
|
"answers": answers_payload |
|
} |
|
status_update = f"Agent workflow finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |