File size: 20,167 Bytes
10e9b7d
 
eccf8e4
7d65c66
3c4371f
29140cf
defd4dc
34292b8
323f26e
 
58154e2
23a6007
ebec9e2
0126b72
34292b8
9029749
 
 
 
42c961f
d59f015
e80aab9
3db6293
34292b8
ebec9e2
323f26e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
935cde9
defd4dc
9029749
 
 
 
defd4dc
9029749
 
323f26e
 
1c5f119
31243f4
 
34292b8
 
 
ebec9e2
34292b8
 
ebec9e2
e73cfbd
7e21665
ebec9e2
 
 
8cf3cc0
75ef2fd
8cf3cc0
75ef2fd
 
34292b8
035834c
34292b8
 
 
 
 
1daaf06
 
34292b8
1daaf06
75ef2fd
34292b8
 
 
8cf3cc0
 
 
 
ee44bc0
 
1c5f119
7e21665
4beca24
7e21665
ee44bc0
 
 
27b9c3e
ee44bc0
 
 
27b9c3e
 
ee44bc0
 
4beca24
02dfc73
ee44bc0
399fe38
27b9c3e
ee44bc0
 
 
 
 
 
 
27b9c3e
ee44bc0
 
 
 
 
27b9c3e
ee44bc0
 
 
4beca24
ebec9e2
b058559
29140cf
323f26e
29140cf
 
 
323f26e
ebec9e2
29140cf
9b52fe3
 
 
 
 
323f26e
 
 
 
 
 
 
9b52fe3
29140cf
 
 
 
 
 
 
 
 
 
 
b058559
399fe38
323f26e
 
 
 
 
 
ebec9e2
 
 
4beca24
ebec9e2
d0f1039
 
ebec9e2
9b52fe3
 
 
8f6a15e
 
 
 
 
43b41d6
9b52fe3
 
 
 
323f26e
 
 
 
 
 
 
399fe38
ebec9e2
399fe38
8f6a15e
ebec9e2
399fe38
 
ebec9e2
9b52fe3
399fe38
ebec9e2
 
 
399fe38
323f26e
 
 
 
 
 
ebec9e2
 
4beca24
ebec9e2
 
399fe38
ebec9e2
323f26e
 
 
 
 
 
ebec9e2
9b52fe3
 
 
 
 
 
 
 
 
323f26e
 
 
 
 
 
 
 
9b52fe3
ebec9e2
 
323f26e
ebec9e2
 
 
 
 
4beca24
323f26e
399fe38
 
 
 
 
323f26e
 
 
399fe38
ebec9e2
 
 
323f26e
 
 
 
 
 
 
 
399fe38
ebec9e2
 
 
 
4021bf3
3e0fef2
31243f4
 
 
 
7d65c66
b177367
7e21665
7e4a06b
3e0fef2
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
3e0fef2
31243f4
7e21665
31243f4
3e0fef2
31243f4
3c4371f
31243f4
3e0fef2
 
36ed51a
3e0fef2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3e0fef2
 
31243f4
e80aab9
31243f4
 
3c4371f
3e0fef2
 
 
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3e0fef2
 
31243f4
 
 
 
 
 
3e0fef2
31243f4
3e0fef2
399fe38
323f26e
399fe38
 
 
 
 
323f26e
 
 
399fe38
3e0fef2
 
 
 
 
 
 
 
 
 
399fe38
3e0fef2
 
 
399fe38
7d65c66
3e0fef2
 
 
 
 
 
 
399fe38
3e0fef2
31243f4
3e0fef2
 
 
 
 
 
 
31243f4
 
3c4371f
31243f4
 
b177367
3e0fef2
 
 
 
 
 
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import ast
import operator
import time
import json
from datetime import datetime
from typing import List, Dict, Any, Optional, Annotated
from langgraph.graph import Graph, StateGraph
from langgraph.prebuilt import ToolNode
from tools import simple_search
from openai import OpenAI
from typing_extensions import TypedDict

def override(_, new): return new

print("trial")
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")  # Make sure to set this environment variable

# Create logs directory if it doesn't exist
LOGS_DIR = "question_logs"
os.makedirs(LOGS_DIR, exist_ok=True)

def log_to_file(task_id: str, question: str, log_data: Dict[str, Any]):
    """Store logs for a question in a JSON file."""
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"{LOGS_DIR}/question_{task_id}_{timestamp}.json"
    
    log_entry = {
        "task_id": task_id,
        "question": question,
        "timestamp": timestamp,
        "logs": log_data
    }
    
    with open(filename, 'w', encoding='utf-8') as f:
        json.dump(log_entry, f, indent=2, ensure_ascii=False)
    
    print(f"Logs saved to {filename}")

class AgentState(TypedDict):
    question: Annotated[str, override]
    current_step: Annotated[str, override]
    tool_output: Annotated[str, override]
    final_answer: Annotated[str, override]
    history: Annotated[List[Dict[str, str]], operator.add]
    needs_more_info: Annotated[bool, override]
    search_query: Annotated[str, override]
    task_id: Annotated[str, override]  # Add task_id to state
    logs: Annotated[Dict[str, Any], operator.add]  # Add logs to state

class BasicAgent:
    def __init__(self):
        print("Initializing BasicAgent with OpenAI...")
        if not OPENAI_API_KEY:
            raise ValueError("OPENAI_API_KEY environment variable not set. Please set your OpenAI API key.")
        
        # Initialize OpenAI client
        self.llm = OpenAI(api_key=OPENAI_API_KEY)
        
        # Create the agent workflow
        print("Creating workflow variable")
        self.workflow = self._create_workflow()
        print("BasicAgent initialization complete.")

    def _call_llm_api(self, prompt: str) -> str:
        """Call the model and return the raw text output."""
        try:
            print("=== Sending prompt ===")
            print(prompt[:500])
            response = self.llm.chat.completions.create(
                model="gpt-4.1-nano",
                messages=[
                    {"role": "system", "content": "You are a helpful AI assistant that provides clear and concise answers."},
                    {"role": "user", "content": prompt}
                ],
                max_tokens=200,
                temperature=0.7,
                top_p=0.95,
                frequency_penalty=0.1
            )
            print("=== Received response ===")
            response_text = response.choices[0].message.content
            print(response_text)
            return response_text
        except Exception as e:
            print(f"Error calling LLM API: {e}")
            return f"Error getting response from LLM: {str(e)}"

    def _create_workflow(self) -> Graph:
        """Create the agent workflow using LangGraph."""
        # Create the workflow with state schema
        print("Creating Stategraph : error happens here?")
        workflow = StateGraph(state_schema=AgentState)
        print("Stategraph created")
        # Add nodes
        workflow.add_node("analyze", self._analyze_question)
        workflow.add_node("search", self._use_search)
        workflow.add_node("generate_answer", self._generate_final_answer)
        
        # Define edges
        workflow.add_edge("analyze", "search")
        workflow.add_edge("analyze", "generate_answer")
        workflow.add_edge("search", "generate_answer")
        
        # Define conditional edges
        def router(state: AgentState) -> str:
            if state["current_step"] == 'search':
                return 'search'
            elif state["current_step"] == 'final_answer':
                return 'generate_answer'
            return 'analyze'
        
        workflow.add_conditional_edges(
            "analyze",
            router,
            {
                "search": "search",
                "final_answer": "generate_answer"
            }
        )
        
        # Set entry and exit points
        workflow.set_entry_point("analyze")
        workflow.set_finish_point("generate_answer")
        
        return workflow.compile()

    def _analyze_question(self, state: AgentState) -> AgentState:
        """Analyze the question and determine the next step."""
        prompt = f"""Analyze this question and determine what needs to be done: {state['question']}

Return ONLY a Python dictionary in this exact format, with no other text or explanation:
{{
    "needs_search": true/false,
    "search_query": "query if needed"
}}"""
        
        try:
            llm_response = self._call_llm_api(prompt)
            print("\n=== Analyze Question LLM Response ===")
            print(f"Input: {state['question']}")
            print(f"LLM Response: {llm_response}")
            
            # Log the analysis step
            state["logs"]["analyze"] = {
                "prompt": prompt,
                "response": llm_response,
                "timestamp": datetime.now().isoformat()
            }
            
            analysis = ast.literal_eval(llm_response)
            state["needs_more_info"] = analysis.get('needs_search', False)
            state["search_query"] = analysis.get('search_query', '')
            
            if analysis.get('needs_search', False):
                state["current_step"] = 'search'
            else:
                state["current_step"] = 'final_answer'
        except (ValueError, SyntaxError) as e:
            print(f"Error parsing LLM response: {e}")
            # Default to search if we can't parse the response
            state["needs_more_info"] = True
            state["search_query"] = state["question"]
            state["current_step"] = 'search'
            
            # Log the error
            state["logs"]["analyze_error"] = {
                "error": str(e),
                "timestamp": datetime.now().isoformat()
            }
        
        return state

    def _use_search(self, state: AgentState) -> AgentState:
        """Use the search tool."""
        time.sleep(2)  # Sleep before search
        
        try:
            print("\n=== Search Tool ===")
            print(f"Search Query: {state['search_query']}")
            
            # Use the simplified search function
            search_results = simple_search(
                query=state["search_query"],
                max_results=3
            )
            
            print("Search Results:")
            for i, result in enumerate(search_results, 1):
                print(f"{i}. {result}")
            
            # Log the search step
            state["logs"]["search"] = {
                "query": state["search_query"],
                "results": search_results,
                "timestamp": datetime.now().isoformat()
            }
            
            state["history"].append({
                'step': 'search',
                'query': state["search_query"],
                'results': search_results
            })
            state["needs_more_info"] = False
            state["current_step"] = 'final_answer'
        except Exception as e:
            print(f"Search Error: {e}")
            state["history"].append({
                'step': 'search_error',
                'error': str(e)
            })
            state["current_step"] = 'final_answer'
            
            # Log the error
            state["logs"]["search_error"] = {
                "error": str(e),
                "timestamp": datetime.now().isoformat()
            }
        return state

    def _generate_final_answer(self, state: AgentState) -> AgentState:
        """Generate the final answer based on all gathered information."""
        history_str = "\n".join([f"{h['step']}: {h.get('output', h.get('results', h.get('error', '')))}" 
                               for h in state["history"]])
        
        prompt = f"""Question: {state['question']}

History of steps taken:
{history_str}

Return ONLY the direct answer to the question. Do not include any explanations, introductions, or formatting. Just the answer."""
        
        print("\n=== Generate Final Answer ===")
        print(f"Question: {state['question']}")
        print("History:")
        print(history_str)
        
        llm_response = self._call_llm_api(prompt)
        print("\nFinal Answer:")
        print(llm_response)
        
        # Log the final answer generation
        state["logs"]["final_answer"] = {
            "prompt": prompt,
            "response": llm_response,
            "history": history_str,
            "timestamp": datetime.now().isoformat()
        }
        
        state["final_answer"] = llm_response
        return state

    def __call__(self, question: str, task_id: str = "unknown") -> str:
        """Process a question through the agent workflow."""
        print(f"Agent received question: {question[:50]}...")
        
        try:
            # Initialize the state
            initial_state: AgentState = {
                "question": question,
                "current_step": "analyze",
                "tool_output": "",
                "final_answer": "",
                "history": [],
                "needs_more_info": False,
                "search_query": "",
                "task_id": task_id,
                "logs": {}
            }
            
            # Run the workflow
            final_state = self.workflow.invoke(initial_state)
            
            # Save logs to file
            log_to_file(
                task_id=final_state["task_id"],
                question=final_state["question"],
                log_data=final_state["logs"]
            )
            
            return final_state["final_answer"]
            
        except Exception as e:
            print(f"Error in agent processing: {e}")
            return f"I encountered an error while processing your question: {str(e)}"

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
    print("Space ID: ", space_id)
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        print("Initializing agent: trial ")
        agent = BasicAgent()
        print("Agent initialized successfully with workflow.")
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    # In the case of an app running as a hugging Face space, this link points toward your codebase
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(f"Agent code location: {agent_code}")

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent workflow on {len(questions_data)} questions...")
    
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue

        try:
            # Initialize the state for this question
            initial_state = {
                "question": question_text,
                "current_step": "analyze",
                "tool_output": "",
                "final_answer": "",
                "history": [],
                "needs_more_info": False,
                "search_query": "",
                "task_id": task_id,
                "logs": {}
            }
            
            # Run the workflow for this question
            print(f"\nProcessing question {task_id}: {question_text[:50]}...")
            final_state = agent.workflow.invoke(initial_state)
            
            # Log the workflow history
            workflow_history = "\n".join([
                f"Step: {h['step']}\n" +
                f"Input: {h.get('input', h.get('query', ''))}\n" +
                f"Output: {h.get('output', h.get('results', h.get('error', '')))}"
                for h in final_state["history"]
            ])
            
            # Add to results
            submitted_answer = final_state["final_answer"]
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": submitted_answer,
                "Workflow History": workflow_history
            })
            
            print(f"Completed question {task_id} with {len(final_state['history'])} workflow steps")
            
        except Exception as e:
            print(f"Error running agent workflow on task {task_id}: {e}")
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": f"WORKFLOW ERROR: {e}",
                "Workflow History": "Error occurred before workflow completion"
            })

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }
    status_update = f"Agent workflow finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)