File size: 20,167 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f 29140cf defd4dc 34292b8 323f26e 58154e2 23a6007 ebec9e2 0126b72 34292b8 9029749 42c961f d59f015 e80aab9 3db6293 34292b8 ebec9e2 323f26e 935cde9 defd4dc 9029749 defd4dc 9029749 323f26e 1c5f119 31243f4 34292b8 ebec9e2 34292b8 ebec9e2 e73cfbd 7e21665 ebec9e2 8cf3cc0 75ef2fd 8cf3cc0 75ef2fd 34292b8 035834c 34292b8 1daaf06 34292b8 1daaf06 75ef2fd 34292b8 8cf3cc0 ee44bc0 1c5f119 7e21665 4beca24 7e21665 ee44bc0 27b9c3e ee44bc0 27b9c3e ee44bc0 4beca24 02dfc73 ee44bc0 399fe38 27b9c3e ee44bc0 27b9c3e ee44bc0 27b9c3e ee44bc0 4beca24 ebec9e2 b058559 29140cf 323f26e 29140cf 323f26e ebec9e2 29140cf 9b52fe3 323f26e 9b52fe3 29140cf b058559 399fe38 323f26e ebec9e2 4beca24 ebec9e2 d0f1039 ebec9e2 9b52fe3 8f6a15e 43b41d6 9b52fe3 323f26e 399fe38 ebec9e2 399fe38 8f6a15e ebec9e2 399fe38 ebec9e2 9b52fe3 399fe38 ebec9e2 399fe38 323f26e ebec9e2 4beca24 ebec9e2 399fe38 ebec9e2 323f26e ebec9e2 9b52fe3 323f26e 9b52fe3 ebec9e2 323f26e ebec9e2 4beca24 323f26e 399fe38 323f26e 399fe38 ebec9e2 323f26e 399fe38 ebec9e2 4021bf3 3e0fef2 31243f4 7d65c66 b177367 7e21665 7e4a06b 3e0fef2 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 3e0fef2 31243f4 7e21665 31243f4 3e0fef2 31243f4 3c4371f 31243f4 3e0fef2 36ed51a 3e0fef2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3e0fef2 31243f4 e80aab9 31243f4 3c4371f 3e0fef2 7d65c66 31243f4 e80aab9 b177367 7d65c66 3e0fef2 31243f4 3e0fef2 31243f4 3e0fef2 399fe38 323f26e 399fe38 323f26e 399fe38 3e0fef2 399fe38 3e0fef2 399fe38 7d65c66 3e0fef2 399fe38 3e0fef2 31243f4 3e0fef2 31243f4 3c4371f 31243f4 b177367 3e0fef2 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import ast
import operator
import time
import json
from datetime import datetime
from typing import List, Dict, Any, Optional, Annotated
from langgraph.graph import Graph, StateGraph
from langgraph.prebuilt import ToolNode
from tools import simple_search
from openai import OpenAI
from typing_extensions import TypedDict
def override(_, new): return new
print("trial")
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") # Make sure to set this environment variable
# Create logs directory if it doesn't exist
LOGS_DIR = "question_logs"
os.makedirs(LOGS_DIR, exist_ok=True)
def log_to_file(task_id: str, question: str, log_data: Dict[str, Any]):
"""Store logs for a question in a JSON file."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{LOGS_DIR}/question_{task_id}_{timestamp}.json"
log_entry = {
"task_id": task_id,
"question": question,
"timestamp": timestamp,
"logs": log_data
}
with open(filename, 'w', encoding='utf-8') as f:
json.dump(log_entry, f, indent=2, ensure_ascii=False)
print(f"Logs saved to {filename}")
class AgentState(TypedDict):
question: Annotated[str, override]
current_step: Annotated[str, override]
tool_output: Annotated[str, override]
final_answer: Annotated[str, override]
history: Annotated[List[Dict[str, str]], operator.add]
needs_more_info: Annotated[bool, override]
search_query: Annotated[str, override]
task_id: Annotated[str, override] # Add task_id to state
logs: Annotated[Dict[str, Any], operator.add] # Add logs to state
class BasicAgent:
def __init__(self):
print("Initializing BasicAgent with OpenAI...")
if not OPENAI_API_KEY:
raise ValueError("OPENAI_API_KEY environment variable not set. Please set your OpenAI API key.")
# Initialize OpenAI client
self.llm = OpenAI(api_key=OPENAI_API_KEY)
# Create the agent workflow
print("Creating workflow variable")
self.workflow = self._create_workflow()
print("BasicAgent initialization complete.")
def _call_llm_api(self, prompt: str) -> str:
"""Call the model and return the raw text output."""
try:
print("=== Sending prompt ===")
print(prompt[:500])
response = self.llm.chat.completions.create(
model="gpt-4.1-nano",
messages=[
{"role": "system", "content": "You are a helpful AI assistant that provides clear and concise answers."},
{"role": "user", "content": prompt}
],
max_tokens=200,
temperature=0.7,
top_p=0.95,
frequency_penalty=0.1
)
print("=== Received response ===")
response_text = response.choices[0].message.content
print(response_text)
return response_text
except Exception as e:
print(f"Error calling LLM API: {e}")
return f"Error getting response from LLM: {str(e)}"
def _create_workflow(self) -> Graph:
"""Create the agent workflow using LangGraph."""
# Create the workflow with state schema
print("Creating Stategraph : error happens here?")
workflow = StateGraph(state_schema=AgentState)
print("Stategraph created")
# Add nodes
workflow.add_node("analyze", self._analyze_question)
workflow.add_node("search", self._use_search)
workflow.add_node("generate_answer", self._generate_final_answer)
# Define edges
workflow.add_edge("analyze", "search")
workflow.add_edge("analyze", "generate_answer")
workflow.add_edge("search", "generate_answer")
# Define conditional edges
def router(state: AgentState) -> str:
if state["current_step"] == 'search':
return 'search'
elif state["current_step"] == 'final_answer':
return 'generate_answer'
return 'analyze'
workflow.add_conditional_edges(
"analyze",
router,
{
"search": "search",
"final_answer": "generate_answer"
}
)
# Set entry and exit points
workflow.set_entry_point("analyze")
workflow.set_finish_point("generate_answer")
return workflow.compile()
def _analyze_question(self, state: AgentState) -> AgentState:
"""Analyze the question and determine the next step."""
prompt = f"""Analyze this question and determine what needs to be done: {state['question']}
Return ONLY a Python dictionary in this exact format, with no other text or explanation:
{{
"needs_search": true/false,
"search_query": "query if needed"
}}"""
try:
llm_response = self._call_llm_api(prompt)
print("\n=== Analyze Question LLM Response ===")
print(f"Input: {state['question']}")
print(f"LLM Response: {llm_response}")
# Log the analysis step
state["logs"]["analyze"] = {
"prompt": prompt,
"response": llm_response,
"timestamp": datetime.now().isoformat()
}
analysis = ast.literal_eval(llm_response)
state["needs_more_info"] = analysis.get('needs_search', False)
state["search_query"] = analysis.get('search_query', '')
if analysis.get('needs_search', False):
state["current_step"] = 'search'
else:
state["current_step"] = 'final_answer'
except (ValueError, SyntaxError) as e:
print(f"Error parsing LLM response: {e}")
# Default to search if we can't parse the response
state["needs_more_info"] = True
state["search_query"] = state["question"]
state["current_step"] = 'search'
# Log the error
state["logs"]["analyze_error"] = {
"error": str(e),
"timestamp": datetime.now().isoformat()
}
return state
def _use_search(self, state: AgentState) -> AgentState:
"""Use the search tool."""
time.sleep(2) # Sleep before search
try:
print("\n=== Search Tool ===")
print(f"Search Query: {state['search_query']}")
# Use the simplified search function
search_results = simple_search(
query=state["search_query"],
max_results=3
)
print("Search Results:")
for i, result in enumerate(search_results, 1):
print(f"{i}. {result}")
# Log the search step
state["logs"]["search"] = {
"query": state["search_query"],
"results": search_results,
"timestamp": datetime.now().isoformat()
}
state["history"].append({
'step': 'search',
'query': state["search_query"],
'results': search_results
})
state["needs_more_info"] = False
state["current_step"] = 'final_answer'
except Exception as e:
print(f"Search Error: {e}")
state["history"].append({
'step': 'search_error',
'error': str(e)
})
state["current_step"] = 'final_answer'
# Log the error
state["logs"]["search_error"] = {
"error": str(e),
"timestamp": datetime.now().isoformat()
}
return state
def _generate_final_answer(self, state: AgentState) -> AgentState:
"""Generate the final answer based on all gathered information."""
history_str = "\n".join([f"{h['step']}: {h.get('output', h.get('results', h.get('error', '')))}"
for h in state["history"]])
prompt = f"""Question: {state['question']}
History of steps taken:
{history_str}
Return ONLY the direct answer to the question. Do not include any explanations, introductions, or formatting. Just the answer."""
print("\n=== Generate Final Answer ===")
print(f"Question: {state['question']}")
print("History:")
print(history_str)
llm_response = self._call_llm_api(prompt)
print("\nFinal Answer:")
print(llm_response)
# Log the final answer generation
state["logs"]["final_answer"] = {
"prompt": prompt,
"response": llm_response,
"history": history_str,
"timestamp": datetime.now().isoformat()
}
state["final_answer"] = llm_response
return state
def __call__(self, question: str, task_id: str = "unknown") -> str:
"""Process a question through the agent workflow."""
print(f"Agent received question: {question[:50]}...")
try:
# Initialize the state
initial_state: AgentState = {
"question": question,
"current_step": "analyze",
"tool_output": "",
"final_answer": "",
"history": [],
"needs_more_info": False,
"search_query": "",
"task_id": task_id,
"logs": {}
}
# Run the workflow
final_state = self.workflow.invoke(initial_state)
# Save logs to file
log_to_file(
task_id=final_state["task_id"],
question=final_state["question"],
log_data=final_state["logs"]
)
return final_state["final_answer"]
except Exception as e:
print(f"Error in agent processing: {e}")
return f"I encountered an error while processing your question: {str(e)}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
print("Space ID: ", space_id)
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
print("Initializing agent: trial ")
agent = BasicAgent()
print("Agent initialized successfully with workflow.")
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code location: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent workflow on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
# Initialize the state for this question
initial_state = {
"question": question_text,
"current_step": "analyze",
"tool_output": "",
"final_answer": "",
"history": [],
"needs_more_info": False,
"search_query": "",
"task_id": task_id,
"logs": {}
}
# Run the workflow for this question
print(f"\nProcessing question {task_id}: {question_text[:50]}...")
final_state = agent.workflow.invoke(initial_state)
# Log the workflow history
workflow_history = "\n".join([
f"Step: {h['step']}\n" +
f"Input: {h.get('input', h.get('query', ''))}\n" +
f"Output: {h.get('output', h.get('results', h.get('error', '')))}"
for h in final_state["history"]
])
# Add to results
submitted_answer = final_state["final_answer"]
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer,
"Workflow History": workflow_history
})
print(f"Completed question {task_id} with {len(final_state['history'])} workflow steps")
except Exception as e:
print(f"Error running agent workflow on task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"WORKFLOW ERROR: {e}",
"Workflow History": "Error occurred before workflow completion"
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
status_update = f"Agent workflow finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |