naman1102's picture
Update app.py
2c6be25
raw
history blame
17.7 kB
import os
import gradio as gr
import requests
import ast
import json
import time
import pandas as pd
from datetime import datetime
from typing import List, Dict, Any, Annotated
from langgraph.graph import Graph, StateGraph
from typing_extensions import TypedDict
from openai import OpenAI
from tools import simple_search
import re
from huggingface_hub import InferenceClient
import io
import mimetypes
import base64
import cv2
import numpy as np
from io import BytesIO
import tempfile
import subprocess
import sys
import textwrap
# -------------------------
# Environment & constants
# -------------------------
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")
# Initialize HF client
client = InferenceClient(token=HF_TOKEN)
# -------------------------
# Constants
# -------------------------
# Remove SYSTEM constant as we're using JSON contract
# -------------------------
# Utility helpers
# -------------------------
def override(_, new):
return new
def merge_dicts(old: Dict, new: Dict) -> Dict:
"""Merge two dictionaries, with *new* values taking precedence."""
return {**old, **new}
def tighten(q: str) -> str:
"""
Strip long GAIA questions down to quoted phrases and capitalised words.
Falls back to the original text if we strip too much.
"""
quoted = re.findall(r'"([^"]+)"', q)
caps = re.findall(r'\b([A-Z0-9][\w-]{2,})', q)
short = " ".join(quoted + caps)
return short or q
# -------------------------
# Multimodal helpers
# -------------------------
def retry_hf_inference(func):
"""Decorator to retry HF Inference API calls with backoff."""
def wrapper(*args, **kwargs):
max_retries = 2
base_delay = 7
for attempt in range(max_retries + 1):
try:
return func(*args, **kwargs)
except Exception as e:
if attempt == max_retries:
raise
delay = base_delay * (attempt + 1)
print(f"HF API error: {str(e)}. Retrying in {delay}s...")
time.sleep(delay)
return wrapper
@retry_hf_inference
def image_qa_bytes(data: bytes, prompt: str) -> str:
"""Query LLaVA for image-based QA using bytes."""
headers = {"Content-Type": "application/octet-stream"}
return client.post("llava-hf/llava-v1.6-mistral-7b-hf", data=data, headers=headers)
@retry_hf_inference
def video_label_bytes(data: bytes) -> str:
"""Get video classification using VideoMAE-Base from bytes."""
# Process video to get first 8 seconds, 16 frames
# Read video from bytes
video_bytes = BytesIO(data)
cap = cv2.VideoCapture()
cap.open(video_bytes)
# Get video properties
fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Calculate frames to extract (16 frames over 8 seconds)
target_frames = 16
target_duration = 8 # seconds
frame_interval = max(1, int(frame_count / (fps * target_duration)))
frames = []
frame_idx = 0
while len(frames) < target_frames and frame_idx < frame_count:
ret, frame = cap.read()
if not ret:
break
if frame_idx % frame_interval == 0:
# Resize frame to match VideoMAE's expected input
frame = cv2.resize(frame, (224, 224))
frames.append(frame)
frame_idx += 1
cap.release()
# If we don't have enough frames, duplicate the last frame
while len(frames) < target_frames:
frames.append(frames[-1])
# Stack frames and convert to bytes
video_array = np.stack(frames)
_, buffer = cv2.imencode('.mp4', video_array)
processed_bytes = buffer.tobytes()
# Send to VideoMAE
headers = {"Content-Type": "application/octet-stream"}
preds = client.post(
"MCG-NJU/videomae-base-finetuned-ucf101",
data=processed_bytes,
headers=headers
)
return sorted(preds, key=lambda x: x["score"], reverse=True)[0]["label"]
def sheet_answer_bytes(data: bytes, question: str) -> str:
"""Process spreadsheet data from bytes and return numeric answer."""
if mimetypes.guess_type("x.xlsx")[0] == "text/csv" or question.endswith(".csv"):
df = pd.read_csv(io.BytesIO(data))
else:
df = pd.read_excel(io.BytesIO(data))
# Calculate total sales for Food category
total = df[df["Category"] == "Food"]["Sales"].sum()
return f"{total:.2f}"
# -------------------------
# Code Analysis helpers
# -------------------------
def run_python(code: str) -> str:
"""Quick & dirty evaluator for Python code."""
with tempfile.NamedTemporaryFile("w+", suffix=".py", delete=False) as f:
f.write(textwrap.dedent(code))
f.flush()
out = subprocess.check_output([sys.executable, f.name], timeout=10)
return out.decode().strip()
# -------------------------
# State definition
# -------------------------
class AgentState(TypedDict):
question: Annotated[str, override]
current_step: Annotated[str, override]
final_answer: Annotated[str, override]
history: Annotated[List[Dict[str, str]], list.__add__]
needs_search: Annotated[bool, override]
search_query: Annotated[str, override]
task_id: Annotated[str, override]
logs: Annotated[Dict[str, Any], merge_dicts]
file_url: Annotated[str, override]
code_blocks: Annotated[List[Dict[str, str]], list.__add__]
# -------------------------
# BasicAgent implementation
# -------------------------
class BasicAgent:
def __init__(self, session: requests.Session):
if not OPENAI_API_KEY:
raise EnvironmentError("OPENAI_API_KEY not set")
self.llm = OpenAI(api_key=OPENAI_API_KEY)
self.workflow = self._build_workflow()
self.session = session
def _call_llm(self, prompt: str, max_tokens: int = 256) -> str:
try:
resp = self.llm.chat.completions.create(
model="gpt-4.1",
messages=[
{"role": "user", "content": prompt},
],
temperature=0,
top_p=0.1,
max_tokens=max_tokens,
)
return resp.choices[0].message.content.strip()
except Exception as e:
print(f"\nLLM Error: {str(e)}")
raise
def _safe_parse(self, raw: str) -> str:
try:
return json.loads(raw)["ANSWER"]
except Exception:
# grab the first {...} in the text
match = re.search(r'\{.*?\}', raw, re.S)
if match:
try:
return json.loads(match.group())["ANSWER"]
except Exception:
pass
# as a last resort, strip everything before the first colon
return raw.split(':', 1)[-1].strip()
def __call__(self, question: str, task_id: str = "unknown", file_url: str = "") -> str:
state: AgentState = {
"question": question,
"current_step": "answer",
"final_answer": "",
"history": [],
"needs_search": False,
"search_query": "",
"task_id": task_id,
"logs": {},
"file_url": file_url,
"code_blocks": []
}
print(f"\nProcessing task {task_id}")
print(f"Question: {state['question']}")
print(f"File URL: {state['file_url']}")
final_state = self.workflow.invoke(state)
return final_state["final_answer"]
def _generate_answer(self, state: AgentState) -> AgentState:
if state["file_url"]:
try:
print(f"Downloading {state['file_url']} …")
response = self.session.get(state["file_url"], timeout=30)
response.raise_for_status()
data = response.content
print(f"Successfully downloaded file, size: {len(data)} bytes")
kind = mimetypes.guess_type(state["file_url"])[0] or ""
print(f"Detected file type: {kind}")
if "image" in kind:
print("Processing as image...")
answer = image_qa_bytes(data, state["question"])
elif "video" in kind:
print("Processing as video...")
answer = video_label_bytes(data)
elif kind.endswith("spreadsheet") or state["file_url"].endswith((".xlsx", ".csv")):
print("Processing as spreadsheet...")
answer = sheet_answer_bytes(data, state["question"])
elif state["file_url"].endswith(".py"):
print("Processing as Python file...")
answer = run_python(data.decode())
else:
print(f"Unsupported file type: {kind}")
answer = f"Unsupported file type: {kind}"
print(f"Generated answer: {answer}")
state["final_answer"] = answer
state["current_step"] = "done"
return state
except requests.exceptions.RequestException as e:
print(f"Error downloading file: {e}")
state["final_answer"] = f"Error downloading file: {str(e)}"
state["current_step"] = "done"
return state
except Exception as e:
print(f"\nError processing file {state['file_url']}: {str(e)}")
state["final_answer"] = f"Error processing file: {str(e)}"
state["current_step"] = "done"
return state
# For text-only questions, use the LLM
print("\nProcessing as text-only question...")
prompt = f"""
Answer this question using the materials provided.
QUESTION:
{state['question']}
Return ONLY this exact JSON object:
{{"ANSWER": "<answer text>"}}
"""
try:
raw = self._call_llm(prompt, 300)
answer = self._safe_parse(raw)
print(f"Generated answer: {answer}")
state["final_answer"] = answer
except Exception as e:
print(f"\nLLM Error in answer generation: {str(e)}")
state["final_answer"] = "I encountered an error while generating the answer."
state["current_step"] = "done"
return state
def _build_workflow(self) -> Graph:
sg = StateGraph(state_schema=AgentState)
sg.add_node("answer", self._generate_answer)
sg.set_entry_point("answer")
sg.set_finish_point("answer")
return sg.compile()
# ----------------------------------------------------------------------------------
# Gradio Interface & Submission Routines
# ----------------------------------------------------------------------------------
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID")
print("Space ID: ", space_id)
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# Create a persistent session for all requests
sess = requests.Session()
# 1. Instantiate Agent
try:
print("Initializing agent...")
agent = BasicAgent(session=sess) # Pass session to agent
print("Agent initialized successfully.")
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = sess.get(questions_url, timeout=30)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
# 3. Run Agent and Collect Answers
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
if not task_id:
continue
try:
print(f"\nProcessing question {task_id}...")
# Handle file URL with fallback to generic attachment endpoint
raw_url = item.get("file_url") or ""
if not raw_url: # fallback for empty field
raw_url = f"/files/{task_id}" # generic attachment endpoint
file_url = f"{api_url}{raw_url}" # absolute URL
answer = agent(
question=item.get("question", ""),
task_id=task_id,
file_url=file_url
)
# Add to results
answers_payload.append({
"task_id": task_id,
"submitted_answer": answer
})
results_log.append({
"Task ID": task_id,
"Question": item.get("question", ""),
"Submitted Answer": answer
})
except Exception as e:
print(f"Error processing task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": item.get("question", ""),
"Submitted Answer": f"ERROR: {e}"
})
if not answers_payload:
return "No answers were generated.", pd.DataFrame(results_log)
# 4. Submit Answers
submission_data = {
"username": username.strip(),
"agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
"answers": answers_payload
}
try:
response = sess.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission Failed: {str(e)}", pd.DataFrame(results_log)
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(
label="Questions and Agent Answers",
wrap=True,
column_widths=["10%", "30%", "30%", "30%"] # Adjust column widths for better display
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)