File size: 17,675 Bytes
10e9b7d
 
eccf8e4
29140cf
323f26e
fc6f881
 
323f26e
fc6f881
23a6007
9029749
fc6f881
622f2bb
3b2a7e8
cc1c674
 
 
 
4e8e7db
 
 
 
 
 
844e3aa
cc1c674
 
 
 
 
 
 
 
 
 
 
fc6f881
7eca316
 
 
 
f7505a2
7eca316
fc6f881
 
 
9029749
fc6f881
 
9029749
fc6f881
 
 
 
2200521
 
 
 
 
 
 
 
 
 
fc6f881
cc1c674
fc6f881
a82796c
49d3a15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa8a2b0
4e8e7db
fa8a2b0
4e8e7db
cc1c674
49d3a15
fa8a2b0
4e8e7db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa8a2b0
 
4e8e7db
 
fa8a2b0
 
 
ebec9e2
fa8a2b0
844e3aa
cc1c674
 
 
 
844e3aa
 
 
 
323f26e
4e8e7db
 
 
 
 
 
 
844e3aa
4e8e7db
 
 
 
fc6f881
 
 
935cde9
defd4dc
9029749
 
 
fc6f881
 
9029749
a82796c
fc6f881
49d3a15
844e3aa
fc6f881
 
 
 
1c5f119
31243f4
8e909cc
34292b8
fc6f881
34292b8
fc6f881
8e909cc
fc6f881
 
e073c39
 
7eca316
e073c39
 
 
98a9782
 
e073c39
 
 
 
 
 
 
98a9782
 
 
 
 
 
 
 
 
 
 
 
 
 
a1148b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2757b9c
 
 
 
fc6f881
108e6be
 
714317c
8e909cc
714317c
 
 
 
108e6be
2757b9c
 
108e6be
2757b9c
108e6be
 
2757b9c
108e6be
 
2757b9c
108e6be
 
2757b9c
108e6be
 
2757b9c
 
108e6be
2757b9c
108e6be
 
 
714317c
 
 
 
 
108e6be
 
 
 
 
 
 
2757b9c
1805291
f7505a2
1805291
cc1c674
1805291
 
1939d2d
 
1805291
b692f0c
f717af9
98a9782
2757b9c
b692f0c
 
 
 
f7505a2
 
ebec9e2
 
fc6f881
 
 
f7505a2
fc6f881
 
 
 
 
 
4021bf3
3e0fef2
31243f4
 
 
 
7d65c66
fc6f881
7e21665
7e4a06b
3e0fef2
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
8e909cc
 
 
3e0fef2
31243f4
fc6f881
8e909cc
fc6f881
31243f4
3c4371f
31243f4
3e0fef2
f7505a2
31243f4
f7505a2
8e909cc
f7505a2
 
 
 
 
 
 
 
 
e80aab9
f7505a2
7d65c66
 
3e0fef2
31243f4
 
4e8e7db
31243f4
3e0fef2
31243f4
4e8e7db
a1148b5
2c6be25
 
 
 
 
a1148b5
 
 
 
 
 
cc0b0be
3e0fef2
f7505a2
 
a1148b5
f7505a2
3e0fef2
 
4e8e7db
09721c1
3e0fef2
 
31243f4
f7505a2
3e0fef2
 
4e8e7db
09721c1
3e0fef2
31243f4
 
f7505a2
31243f4
f7505a2
3e0fef2
 
f7505a2
3e0fef2
 
e80aab9
 
8e909cc
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
f7505a2
7d65c66
f7505a2
e80aab9
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
cc0b0be
 
 
 
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
fc6f881
7d65c66
3c4371f
 
7d65c66
3c4371f
7d65c66
 
fc6f881
7d65c66
 
 
 
 
 
3c4371f
 
31243f4
fc6f881
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
import os
import gradio as gr
import requests
import ast
import json
import time
import pandas as pd
from datetime import datetime
from typing import List, Dict, Any, Annotated
from langgraph.graph import Graph, StateGraph
from typing_extensions import TypedDict
from openai import OpenAI
from tools import simple_search
import re
from huggingface_hub import InferenceClient
import io
import mimetypes
import base64
import cv2
import numpy as np
from io import BytesIO
import tempfile
import subprocess
import sys
import textwrap

# -------------------------
# Environment & constants
# -------------------------

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")

# Initialize HF client
client = InferenceClient(token=HF_TOKEN)

# -------------------------
# Constants
# -------------------------

# Remove SYSTEM constant as we're using JSON contract

# -------------------------
# Utility helpers
# -------------------------

def override(_, new):
    return new

def merge_dicts(old: Dict, new: Dict) -> Dict:
    """Merge two dictionaries, with *new* values taking precedence."""
    return {**old, **new}

def tighten(q: str) -> str:
    """
    Strip long GAIA questions down to quoted phrases and capitalised words.
    Falls back to the original text if we strip too much.
    """
    quoted = re.findall(r'"([^"]+)"', q)
    caps   = re.findall(r'\b([A-Z0-9][\w-]{2,})', q)
    short  = " ".join(quoted + caps)
    return short or q

# -------------------------
# Multimodal helpers
# -------------------------

def retry_hf_inference(func):
    """Decorator to retry HF Inference API calls with backoff."""
    def wrapper(*args, **kwargs):
        max_retries = 2
        base_delay = 7
        
        for attempt in range(max_retries + 1):
            try:
                return func(*args, **kwargs)
            except Exception as e:
                if attempt == max_retries:
                    raise
                delay = base_delay * (attempt + 1)
                print(f"HF API error: {str(e)}. Retrying in {delay}s...")
                time.sleep(delay)
    return wrapper

@retry_hf_inference
def image_qa_bytes(data: bytes, prompt: str) -> str:
    """Query LLaVA for image-based QA using bytes."""
    headers = {"Content-Type": "application/octet-stream"}
    return client.post("llava-hf/llava-v1.6-mistral-7b-hf", data=data, headers=headers)

@retry_hf_inference
def video_label_bytes(data: bytes) -> str:
    """Get video classification using VideoMAE-Base from bytes."""
    # Process video to get first 8 seconds, 16 frames
    
    # Read video from bytes
    video_bytes = BytesIO(data)
    cap = cv2.VideoCapture()
    cap.open(video_bytes)
    
    # Get video properties
    fps = cap.get(cv2.CAP_PROP_FPS)
    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    
    # Calculate frames to extract (16 frames over 8 seconds)
    target_frames = 16
    target_duration = 8  # seconds
    frame_interval = max(1, int(frame_count / (fps * target_duration)))
    
    frames = []
    frame_idx = 0
    
    while len(frames) < target_frames and frame_idx < frame_count:
        ret, frame = cap.read()
        if not ret:
            break
            
        if frame_idx % frame_interval == 0:
            # Resize frame to match VideoMAE's expected input
            frame = cv2.resize(frame, (224, 224))
            frames.append(frame)
            
        frame_idx += 1
    
    cap.release()
    
    # If we don't have enough frames, duplicate the last frame
    while len(frames) < target_frames:
        frames.append(frames[-1])
    
    # Stack frames and convert to bytes
    video_array = np.stack(frames)
    _, buffer = cv2.imencode('.mp4', video_array)
    processed_bytes = buffer.tobytes()
    
    # Send to VideoMAE
    headers = {"Content-Type": "application/octet-stream"}
    preds = client.post(
        "MCG-NJU/videomae-base-finetuned-ucf101", 
        data=processed_bytes,
        headers=headers
    )
    return sorted(preds, key=lambda x: x["score"], reverse=True)[0]["label"]

def sheet_answer_bytes(data: bytes, question: str) -> str:
    """Process spreadsheet data from bytes and return numeric answer."""
    if mimetypes.guess_type("x.xlsx")[0] == "text/csv" or question.endswith(".csv"):
        df = pd.read_csv(io.BytesIO(data))
    else:
        df = pd.read_excel(io.BytesIO(data))
    
    # Calculate total sales for Food category
    total = df[df["Category"] == "Food"]["Sales"].sum()
    return f"{total:.2f}"

# -------------------------
# Code Analysis helpers
# -------------------------

def run_python(code: str) -> str:
    """Quick & dirty evaluator for Python code."""
    with tempfile.NamedTemporaryFile("w+", suffix=".py", delete=False) as f:
        f.write(textwrap.dedent(code))
        f.flush()
        out = subprocess.check_output([sys.executable, f.name], timeout=10)
    return out.decode().strip()

# -------------------------
# State definition
# -------------------------

class AgentState(TypedDict):
    question: Annotated[str, override]
    current_step: Annotated[str, override]
    final_answer: Annotated[str, override]
    history: Annotated[List[Dict[str, str]], list.__add__]
    needs_search: Annotated[bool, override]
    search_query: Annotated[str, override]
    task_id: Annotated[str, override]
    logs: Annotated[Dict[str, Any], merge_dicts]
    file_url: Annotated[str, override]
    code_blocks: Annotated[List[Dict[str, str]], list.__add__]

# -------------------------
# BasicAgent implementation
# -------------------------

class BasicAgent:
    def __init__(self, session: requests.Session):
        if not OPENAI_API_KEY:
            raise EnvironmentError("OPENAI_API_KEY not set")
        self.llm = OpenAI(api_key=OPENAI_API_KEY)
        self.workflow = self._build_workflow()
        self.session = session

    def _call_llm(self, prompt: str, max_tokens: int = 256) -> str:
        try:
            resp = self.llm.chat.completions.create(
                model="gpt-4.1",
                messages=[
                    {"role": "user", "content": prompt},
                ],
                temperature=0,
                top_p=0.1,
                max_tokens=max_tokens,
            )
            return resp.choices[0].message.content.strip()
        except Exception as e:
            print(f"\nLLM Error: {str(e)}")
            raise

    def _safe_parse(self, raw: str) -> str:
        try:
            return json.loads(raw)["ANSWER"]
        except Exception:
            # grab the first {...} in the text
            match = re.search(r'\{.*?\}', raw, re.S)
            if match:
                try:
                    return json.loads(match.group())["ANSWER"]
                except Exception:
                    pass
            # as a last resort, strip everything before the first colon
            return raw.split(':', 1)[-1].strip()

    def __call__(self, question: str, task_id: str = "unknown", file_url: str = "") -> str:
        state: AgentState = {
            "question": question,
            "current_step": "answer",
            "final_answer": "",
            "history": [],
            "needs_search": False,
            "search_query": "",
            "task_id": task_id,
            "logs": {},
            "file_url": file_url,
            "code_blocks": []
        }
        
        print(f"\nProcessing task {task_id}")
        print(f"Question: {state['question']}")
        print(f"File URL: {state['file_url']}")
        
        final_state = self.workflow.invoke(state)
        return final_state["final_answer"]

    def _generate_answer(self, state: AgentState) -> AgentState:
        if state["file_url"]:
            try:
                print(f"Downloading {state['file_url']} …")
                response = self.session.get(state["file_url"], timeout=30)
                response.raise_for_status()
                data = response.content
                print(f"Successfully downloaded file, size: {len(data)} bytes")
                
                kind = mimetypes.guess_type(state["file_url"])[0] or ""
                print(f"Detected file type: {kind}")
                
                if "image" in kind:
                    print("Processing as image...")
                    answer = image_qa_bytes(data, state["question"])
                elif "video" in kind:
                    print("Processing as video...")
                    answer = video_label_bytes(data)
                elif kind.endswith("spreadsheet") or state["file_url"].endswith((".xlsx", ".csv")):
                    print("Processing as spreadsheet...")
                    answer = sheet_answer_bytes(data, state["question"])
                elif state["file_url"].endswith(".py"):
                    print("Processing as Python file...")
                    answer = run_python(data.decode())
                else:
                    print(f"Unsupported file type: {kind}")
                    answer = f"Unsupported file type: {kind}"
                
                print(f"Generated answer: {answer}")
                state["final_answer"] = answer
                state["current_step"] = "done"
                return state
            except requests.exceptions.RequestException as e:
                print(f"Error downloading file: {e}")
                state["final_answer"] = f"Error downloading file: {str(e)}"
                state["current_step"] = "done"
                return state
            except Exception as e:
                print(f"\nError processing file {state['file_url']}: {str(e)}")
                state["final_answer"] = f"Error processing file: {str(e)}"
                state["current_step"] = "done"
                return state

        # For text-only questions, use the LLM
        print("\nProcessing as text-only question...")
        prompt = f"""
Answer this question using the materials provided.

QUESTION:
{state['question']}

Return ONLY this exact JSON object:
{{"ANSWER": "<answer text>"}}
"""
        try:
            raw = self._call_llm(prompt, 300)
            answer = self._safe_parse(raw)
            print(f"Generated answer: {answer}")
            state["final_answer"] = answer
        except Exception as e:
            print(f"\nLLM Error in answer generation: {str(e)}")
            state["final_answer"] = "I encountered an error while generating the answer."
        
        state["current_step"] = "done"
        return state

    def _build_workflow(self) -> Graph:
        sg = StateGraph(state_schema=AgentState)
        sg.add_node("answer", self._generate_answer)
        sg.set_entry_point("answer")
        sg.set_finish_point("answer")
        return sg.compile()

# ----------------------------------------------------------------------------------
# Gradio Interface & Submission Routines
# ----------------------------------------------------------------------------------

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")
    print("Space ID: ", space_id)
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # Create a persistent session for all requests
    sess = requests.Session()

    # 1. Instantiate Agent
    try:
        print("Initializing agent...")
        agent = BasicAgent(session=sess)  # Pass session to agent
        print("Agent initialized successfully.")
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = sess.get(questions_url, timeout=30)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None

    # 3. Run Agent and Collect Answers
    results_log = []
    answers_payload = []
    
    for item in questions_data:
        task_id = item.get("task_id")
        if not task_id:
            continue

        try:
            print(f"\nProcessing question {task_id}...")
            
            # Handle file URL with fallback to generic attachment endpoint
            raw_url = item.get("file_url") or ""
            if not raw_url:  # fallback for empty field
                raw_url = f"/files/{task_id}"  # generic attachment endpoint
            file_url = f"{api_url}{raw_url}"  # absolute URL
            
            answer = agent(
                question=item.get("question", ""),
                task_id=task_id,
                file_url=file_url
            )
            
            # Add to results
            answers_payload.append({
                "task_id": task_id,
                "submitted_answer": answer
            })
            results_log.append({
                "Task ID": task_id,
                "Question": item.get("question", ""),
                "Submitted Answer": answer
            })
            
        except Exception as e:
            print(f"Error processing task {task_id}: {e}")
            results_log.append({
                "Task ID": task_id,
                "Question": item.get("question", ""),
                "Submitted Answer": f"ERROR: {e}"
            })

    if not answers_payload:
        return "No answers were generated.", pd.DataFrame(results_log)

    # 4. Submit Answers
    submission_data = {
        "username": username.strip(),
        "agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
        "answers": answers_payload
    }

    try:
        response = sess.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        return final_status, pd.DataFrame(results_log)
    except Exception as e:
        return f"Submission Failed: {str(e)}", pd.DataFrame(results_log)

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(
        label="Questions and Agent Answers", 
        wrap=True,
        column_widths=["10%", "30%", "30%", "30%"]  # Adjust column widths for better display
    )

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)