multimodalart's picture
Update app.py
3a9bb57 verified
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
import re
import math
import numpy as np
# Load LoRAs from JSON
loras = [
{
"repo": "flymy-ai/qwen-image-realism-lora",
"image": "https://huggingface.co/flymy-ai/qwen-image-realism-lora/resolve/main/assets/flymy_realism.png",
"trigger_word": "Super Realism portrait of",
"trigger_position": "prepend",
"title": "Super Realism"
},
{
"repo": "threecrowco/VolkClipartQwen",
"image": "https://huggingface.co/threecrowco/VolkClipartQwen/resolve/main/images/_app_ai-toolkit_output_VolkDrawings_Qwen_v1_samples_1754805220500__000003000_3.jpg",
"trigger_word": "volk clipart, black and white, ",
"trigger_position": "prepend",
"title": "Volk Clipart"
},
{
"repo": "janekm/analog_film",
"image": "https://huggingface.co/spaces/multimodalart/Qwen-Image-LoRA-Explorer/resolve/main/cat.webp",
"trigger_word": "fifthel",
"trigger_position": "prepend",
"weights": "converted_complete.safetensors",
"title": "Analog Film"
},
{
"repo": "itspoidaman/qwenglitch",
"image": "https://huggingface.co/itspoidaman/qwenglitch/resolve/main/images/GydaJ5LbEAAWKJU.jpeg",
"trigger_word": "qwenglitch",
"title": "Glitch"
},
{
"repo": "alfredplpl/qwen-image-modern-anime-lora",
"image": "https://huggingface.co/alfredplpl/qwen-image-modern-anime-lora/resolve/main/sample1.jpg",
"trigger_word": "Japanese modern anime style, ",
"trigger_position": "prepend",
"title": "Modern Anime"
},
{
"repo": "lichorosario/qwen-image-dottrmstr",
"image": "https://huggingface.co/lichorosario/qwen-image-dottrmstr/resolve/main/images/Day_of_the_Tentacle_Remastered_(PC)_08.jpg",
"trigger_word": "DOTTRMSTR",
"trigger_position": "prepend",
"title": "Day of the Tentacle Style"
}
]
# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "Qwen/Qwen-Image"
# Scheduler configuration from the Qwen-Image-Lightning repository
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
pipe = DiffusionPipeline.from_pretrained(
base_model, scheduler=scheduler, torch_dtype=dtype
).to(device)
# Lightning LoRA info (no global state)
LIGHTNING_LORA_REPO = "lightx2v/Qwen-Image-Lightning"
LIGHTNING_LORA_WEIGHT = "Qwen-Image-Lightning-8steps-V1.0.safetensors"
MAX_SEED = np.iinfo(np.int32).max
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def get_image_size(aspect_ratio):
"""Converts aspect ratio string to width, height tuple."""
if aspect_ratio == "1:1":
return 1024, 1024
elif aspect_ratio == "16:9":
return 1152, 640
elif aspect_ratio == "9:16":
return 640, 1152
elif aspect_ratio == "4:3":
return 1024, 768
elif aspect_ratio == "3:4":
return 768, 1024
elif aspect_ratio == "3:2":
return 1024, 688
elif aspect_ratio == "2:3":
return 688, 1024
else:
return 1024, 1024
def update_selection(evt: gr.SelectData, aspect_ratio):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
# Update aspect ratio if specified in LoRA config
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
aspect_ratio = "9:16"
elif selected_lora["aspect"] == "landscape":
aspect_ratio = "16:9"
else:
aspect_ratio = "1:1"
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
aspect_ratio,
)
def handle_speed_mode(speed_mode):
"""Update UI based on speed/quality toggle."""
if speed_mode == "Speed (8 steps)":
return gr.update(value="Speed mode selected - 8 steps with Lightning LoRA"), 8, 1.0
else:
return gr.update(value="Quality mode selected - 45 steps for best quality"), 45, 3.5
@spaces.GPU(duration=70)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, negative_prompt=""):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
image = pipe(
prompt=prompt_mash,
negative_prompt=negative_prompt,
num_inference_steps=steps,
true_cfg_scale=cfg_scale, # Use true_cfg_scale for Qwen-Image
width=width,
height=height,
generator=generator,
).images[0]
return image
@spaces.GPU(duration=70)
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, progress=gr.Progress(track_tqdm=True)):
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
# Prepare prompt with trigger word
if trigger_word:
if "trigger_position" in selected_lora:
if selected_lora["trigger_position"] == "prepend":
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = f"{prompt} {trigger_word}"
else:
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = prompt
# Always unload any existing LoRAs first to avoid conflicts
with calculateDuration("Unloading existing LoRAs"):
pipe.unload_lora_weights()
# Load LoRAs based on speed mode
if speed_mode == "Speed (8 steps)":
with calculateDuration("Loading Lightning LoRA and style LoRA"):
# Load Lightning LoRA first
pipe.load_lora_weights(
LIGHTNING_LORA_REPO,
weight_name=LIGHTNING_LORA_WEIGHT,
adapter_name="lightning"
)
# Load the selected style LoRA
weight_name = selected_lora.get("weights", None)
pipe.load_lora_weights(
lora_path,
weight_name=weight_name,
low_cpu_mem_usage=True,
adapter_name="style"
)
# Set both adapters active with their weights
pipe.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale])
else:
# Quality mode - only load the style LoRA
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
weight_name = selected_lora.get("weights", None)
pipe.load_lora_weights(
lora_path,
weight_name=weight_name,
low_cpu_mem_usage=True
)
# Set random seed for reproducibility
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Get image dimensions from aspect ratio
width, height = get_image_size(aspect_ratio)
# Generate the image
final_image = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
return final_image, seed
def get_huggingface_safetensors(link):
split_link = link.split("/")
if len(split_link) != 2:
raise Exception("Invalid Hugging Face repository link format.")
print(f"Repository attempted: {split_link}")
# Load model card
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(f"Base model: {base_model}")
# Validate model type (for Qwen-Image)
acceptable_models = {"Qwen/Qwen-Image"}
models_to_check = base_model if isinstance(base_model, list) else [base_model]
if not any(model in acceptable_models for model in models_to_check):
raise Exception("Not a Qwen-Image LoRA!")
# Extract image and trigger word
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
# Initialize Hugging Face file system
fs = HfFileSystem()
try:
list_of_files = fs.ls(link, detail=False)
# Find safetensors file
safetensors_name = None
for file in list_of_files:
filename = file.split("/")[-1]
if filename.endswith(".safetensors"):
safetensors_name = filename
break
if not safetensors_name:
raise Exception("No valid *.safetensors file found in the repository.")
except Exception as e:
print(e)
raise Exception("You didn't include a valid Hugging Face repository with a *.safetensors LoRA")
return split_link[1], link, safetensors_name, trigger_word, image_url
def check_custom_model(link):
print(f"Checking a custom model on: {link}")
if link.endswith('.safetensors'):
if 'huggingface.co' in link:
parts = link.split('/')
try:
hf_index = parts.index('huggingface.co')
username = parts[hf_index + 1]
repo_name = parts[hf_index + 2]
repo = f"{username}/{repo_name}"
safetensors_name = parts[-1]
try:
model_card = ModelCard.load(repo)
trigger_word = model_card.data.get("instance_prompt", "")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
image_url = f"https://huggingface.co/{repo}/resolve/main/{image_path}" if image_path else None
except:
trigger_word = ""
image_url = None
return repo_name, repo, safetensors_name, trigger_word, image_url
except:
raise Exception("Invalid safetensors URL format")
if link.startswith("https://"):
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
else:
return get_huggingface_safetensors(link)
def add_custom_lora(custom_lora):
global loras
if custom_lora:
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
card = f'''
<div class="custom_lora_card">
<span>Loaded custom LoRA:</span>
<div class="card_internal">
<img src="{image}" />
<div>
<h3>{title}</h3>
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
</div>
</div>
</div>
'''
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
if existing_item_index is None:
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(new_item)
loras.append(new_item)
existing_item_index = len(loras) - 1 # Get the actual index after adding
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
except Exception as e:
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen-Image LoRA, this was the issue: {e}")
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen-Image LoRA"), gr.update(visible=True), gr.update(), "", None, ""
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_lora():
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
run_lora.zerogpu = True
css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#speed_status{padding: .5em; border-radius: 5px; margin: 1em 0}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 60)) as app:
title = gr.HTML(
"""<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png" alt="Qwen-Image" style="width: 280px; margin: 0 auto">
<h3 style="margin-top: -10px">LoRA Explorer</h3>""",
elem_id="title",
)
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column():
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Gallery",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False
)
with gr.Group():
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="username/qwen-image-custom-lora")
gr.Markdown("[Check Qwen-Image LoRAs](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list")
custom_lora_info = gr.HTML(visible=False)
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
with gr.Column():
result = gr.Image(label="Generated Image")
with gr.Row():
speed_mode = gr.Radio(
label="Generation Mode",
choices=["Speed (8 steps)", "Quality (45 steps)"],
value="Quality (45 steps)",
info="Speed mode uses Lightning LoRA for faster generation"
)
speed_status = gr.Markdown("Quality mode active", elem_id="speed_status")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Column():
with gr.Row():
aspect_ratio = gr.Radio(
label="Aspect Ratio",
choices=["1:1", "16:9", "9:16", "4:3", "3:4", "3:2", "2:3"],
value="1:1"
)
with gr.Row():
cfg_scale = gr.Slider(
label="Guidance Scale (True CFG)",
minimum=1.0,
maximum=5.0,
step=0.1,
value=3.5,
info="Lower for speed mode, higher for quality"
)
steps = gr.Slider(
label="Steps",
minimum=4,
maximum=50,
step=1,
value=45,
info="Automatically set by speed mode"
)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=1.0)
# Event handlers
gallery.select(
update_selection,
inputs=[aspect_ratio],
outputs=[prompt, selected_info, selected_index, aspect_ratio]
)
speed_mode.change(
handle_speed_mode,
inputs=[speed_mode],
outputs=[speed_status, steps, cfg_scale]
)
custom_lora.input(
add_custom_lora,
inputs=[custom_lora],
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
)
custom_lora_button.click(
remove_custom_lora,
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode],
outputs=[result, seed]
)
app.queue()
app.launch()