Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import json | |
import logging | |
import torch | |
from PIL import Image | |
import spaces | |
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler | |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download | |
import copy | |
import random | |
import time | |
import re | |
import math | |
import numpy as np | |
# Load LoRAs from JSON | |
loras = [ | |
{ | |
"repo": "flymy-ai/qwen-image-realism-lora", | |
"image": "https://huggingface.co/flymy-ai/qwen-image-realism-lora/resolve/main/assets/flymy_realism.png", | |
"trigger_word": "Super Realism portrait of", | |
"trigger_position": "prepend", | |
"title": "Super Realism" | |
}, | |
{ | |
"repo": "threecrowco/VolkClipartQwen", | |
"image": "https://huggingface.co/threecrowco/VolkClipartQwen/resolve/main/images/_app_ai-toolkit_output_VolkDrawings_Qwen_v1_samples_1754805220500__000003000_3.jpg", | |
"trigger_word": "volk clipart, black and white, ", | |
"trigger_position": "prepend", | |
"title": "Volk Clipart" | |
}, | |
{ | |
"repo": "janekm/analog_film", | |
"image": "https://huggingface.co/spaces/multimodalart/Qwen-Image-LoRA-Explorer/resolve/main/cat.webp", | |
"trigger_word": "fifthel", | |
"trigger_position": "prepend", | |
"weights": "converted_complete.safetensors", | |
"title": "Analog Film" | |
}, | |
{ | |
"repo": "itspoidaman/qwenglitch", | |
"image": "https://huggingface.co/itspoidaman/qwenglitch/resolve/main/images/GydaJ5LbEAAWKJU.jpeg", | |
"trigger_word": "qwenglitch", | |
"title": "Glitch" | |
}, | |
{ | |
"repo": "alfredplpl/qwen-image-modern-anime-lora", | |
"image": "https://huggingface.co/alfredplpl/qwen-image-modern-anime-lora/resolve/main/sample1.jpg", | |
"trigger_word": "Japanese modern anime style, ", | |
"trigger_position": "prepend", | |
"title": "Modern Anime" | |
}, | |
{ | |
"repo": "lichorosario/qwen-image-dottrmstr", | |
"image": "https://huggingface.co/lichorosario/qwen-image-dottrmstr/resolve/main/images/Day_of_the_Tentacle_Remastered_(PC)_08.jpg", | |
"trigger_word": "DOTTRMSTR", | |
"trigger_position": "prepend", | |
"title": "Day of the Tentacle Style" | |
} | |
] | |
# Initialize the base model | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
base_model = "Qwen/Qwen-Image" | |
# Scheduler configuration from the Qwen-Image-Lightning repository | |
scheduler_config = { | |
"base_image_seq_len": 256, | |
"base_shift": math.log(3), | |
"invert_sigmas": False, | |
"max_image_seq_len": 8192, | |
"max_shift": math.log(3), | |
"num_train_timesteps": 1000, | |
"shift": 1.0, | |
"shift_terminal": None, | |
"stochastic_sampling": False, | |
"time_shift_type": "exponential", | |
"use_beta_sigmas": False, | |
"use_dynamic_shifting": True, | |
"use_exponential_sigmas": False, | |
"use_karras_sigmas": False, | |
} | |
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) | |
pipe = DiffusionPipeline.from_pretrained( | |
base_model, scheduler=scheduler, torch_dtype=dtype | |
).to(device) | |
# Lightning LoRA info (no global state) | |
LIGHTNING_LORA_REPO = "lightx2v/Qwen-Image-Lightning" | |
LIGHTNING_LORA_WEIGHT = "Qwen-Image-Lightning-8steps-V1.0.safetensors" | |
MAX_SEED = np.iinfo(np.int32).max | |
class calculateDuration: | |
def __init__(self, activity_name=""): | |
self.activity_name = activity_name | |
def __enter__(self): | |
self.start_time = time.time() | |
return self | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.end_time = time.time() | |
self.elapsed_time = self.end_time - self.start_time | |
if self.activity_name: | |
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
else: | |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
def get_image_size(aspect_ratio): | |
"""Converts aspect ratio string to width, height tuple.""" | |
if aspect_ratio == "1:1": | |
return 1024, 1024 | |
elif aspect_ratio == "16:9": | |
return 1152, 640 | |
elif aspect_ratio == "9:16": | |
return 640, 1152 | |
elif aspect_ratio == "4:3": | |
return 1024, 768 | |
elif aspect_ratio == "3:4": | |
return 768, 1024 | |
elif aspect_ratio == "3:2": | |
return 1024, 688 | |
elif aspect_ratio == "2:3": | |
return 688, 1024 | |
else: | |
return 1024, 1024 | |
def update_selection(evt: gr.SelectData, aspect_ratio): | |
selected_lora = loras[evt.index] | |
new_placeholder = f"Type a prompt for {selected_lora['title']}" | |
lora_repo = selected_lora["repo"] | |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" | |
# Update aspect ratio if specified in LoRA config | |
if "aspect" in selected_lora: | |
if selected_lora["aspect"] == "portrait": | |
aspect_ratio = "9:16" | |
elif selected_lora["aspect"] == "landscape": | |
aspect_ratio = "16:9" | |
else: | |
aspect_ratio = "1:1" | |
return ( | |
gr.update(placeholder=new_placeholder), | |
updated_text, | |
evt.index, | |
aspect_ratio, | |
) | |
def handle_speed_mode(speed_mode): | |
"""Update UI based on speed/quality toggle.""" | |
if speed_mode == "Speed (8 steps)": | |
return gr.update(value="Speed mode selected - 8 steps with Lightning LoRA"), 8, 1.0 | |
else: | |
return gr.update(value="Quality mode selected - 45 steps for best quality"), 45, 3.5 | |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, negative_prompt=""): | |
pipe.to("cuda") | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
with calculateDuration("Generating image"): | |
# Generate image | |
image = pipe( | |
prompt=prompt_mash, | |
negative_prompt=negative_prompt, | |
num_inference_steps=steps, | |
true_cfg_scale=cfg_scale, # Use true_cfg_scale for Qwen-Image | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
return image | |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, progress=gr.Progress(track_tqdm=True)): | |
if selected_index is None: | |
raise gr.Error("You must select a LoRA before proceeding.") | |
selected_lora = loras[selected_index] | |
lora_path = selected_lora["repo"] | |
trigger_word = selected_lora["trigger_word"] | |
# Prepare prompt with trigger word | |
if trigger_word: | |
if "trigger_position" in selected_lora: | |
if selected_lora["trigger_position"] == "prepend": | |
prompt_mash = f"{trigger_word} {prompt}" | |
else: | |
prompt_mash = f"{prompt} {trigger_word}" | |
else: | |
prompt_mash = f"{trigger_word} {prompt}" | |
else: | |
prompt_mash = prompt | |
# Always unload any existing LoRAs first to avoid conflicts | |
with calculateDuration("Unloading existing LoRAs"): | |
pipe.unload_lora_weights() | |
# Load LoRAs based on speed mode | |
if speed_mode == "Speed (8 steps)": | |
with calculateDuration("Loading Lightning LoRA and style LoRA"): | |
# Load Lightning LoRA first | |
pipe.load_lora_weights( | |
LIGHTNING_LORA_REPO, | |
weight_name=LIGHTNING_LORA_WEIGHT, | |
adapter_name="lightning" | |
) | |
# Load the selected style LoRA | |
weight_name = selected_lora.get("weights", None) | |
pipe.load_lora_weights( | |
lora_path, | |
weight_name=weight_name, | |
low_cpu_mem_usage=True, | |
adapter_name="style" | |
) | |
# Set both adapters active with their weights | |
pipe.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale]) | |
else: | |
# Quality mode - only load the style LoRA | |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): | |
weight_name = selected_lora.get("weights", None) | |
pipe.load_lora_weights( | |
lora_path, | |
weight_name=weight_name, | |
low_cpu_mem_usage=True | |
) | |
# Set random seed for reproducibility | |
with calculateDuration("Randomizing seed"): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# Get image dimensions from aspect ratio | |
width, height = get_image_size(aspect_ratio) | |
# Generate the image | |
final_image = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale) | |
return final_image, seed | |
def get_huggingface_safetensors(link): | |
split_link = link.split("/") | |
if len(split_link) != 2: | |
raise Exception("Invalid Hugging Face repository link format.") | |
print(f"Repository attempted: {split_link}") | |
# Load model card | |
model_card = ModelCard.load(link) | |
base_model = model_card.data.get("base_model") | |
print(f"Base model: {base_model}") | |
# Validate model type (for Qwen-Image) | |
acceptable_models = {"Qwen/Qwen-Image"} | |
models_to_check = base_model if isinstance(base_model, list) else [base_model] | |
if not any(model in acceptable_models for model in models_to_check): | |
raise Exception("Not a Qwen-Image LoRA!") | |
# Extract image and trigger word | |
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) | |
trigger_word = model_card.data.get("instance_prompt", "") | |
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None | |
# Initialize Hugging Face file system | |
fs = HfFileSystem() | |
try: | |
list_of_files = fs.ls(link, detail=False) | |
# Find safetensors file | |
safetensors_name = None | |
for file in list_of_files: | |
filename = file.split("/")[-1] | |
if filename.endswith(".safetensors"): | |
safetensors_name = filename | |
break | |
if not safetensors_name: | |
raise Exception("No valid *.safetensors file found in the repository.") | |
except Exception as e: | |
print(e) | |
raise Exception("You didn't include a valid Hugging Face repository with a *.safetensors LoRA") | |
return split_link[1], link, safetensors_name, trigger_word, image_url | |
def check_custom_model(link): | |
print(f"Checking a custom model on: {link}") | |
if link.endswith('.safetensors'): | |
if 'huggingface.co' in link: | |
parts = link.split('/') | |
try: | |
hf_index = parts.index('huggingface.co') | |
username = parts[hf_index + 1] | |
repo_name = parts[hf_index + 2] | |
repo = f"{username}/{repo_name}" | |
safetensors_name = parts[-1] | |
try: | |
model_card = ModelCard.load(repo) | |
trigger_word = model_card.data.get("instance_prompt", "") | |
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) | |
image_url = f"https://huggingface.co/{repo}/resolve/main/{image_path}" if image_path else None | |
except: | |
trigger_word = "" | |
image_url = None | |
return repo_name, repo, safetensors_name, trigger_word, image_url | |
except: | |
raise Exception("Invalid safetensors URL format") | |
if link.startswith("https://"): | |
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"): | |
link_split = link.split("huggingface.co/") | |
return get_huggingface_safetensors(link_split[1]) | |
else: | |
return get_huggingface_safetensors(link) | |
def add_custom_lora(custom_lora): | |
global loras | |
if custom_lora: | |
try: | |
title, repo, path, trigger_word, image = check_custom_model(custom_lora) | |
print(f"Loaded custom LoRA: {repo}") | |
card = f''' | |
<div class="custom_lora_card"> | |
<span>Loaded custom LoRA:</span> | |
<div class="card_internal"> | |
<img src="{image}" /> | |
<div> | |
<h3>{title}</h3> | |
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small> | |
</div> | |
</div> | |
</div> | |
''' | |
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None) | |
if existing_item_index is None: | |
new_item = { | |
"image": image, | |
"title": title, | |
"repo": repo, | |
"weights": path, | |
"trigger_word": trigger_word | |
} | |
print(new_item) | |
loras.append(new_item) | |
existing_item_index = len(loras) - 1 # Get the actual index after adding | |
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word | |
except Exception as e: | |
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen-Image LoRA, this was the issue: {e}") | |
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen-Image LoRA"), gr.update(visible=True), gr.update(), "", None, "" | |
else: | |
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" | |
def remove_custom_lora(): | |
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" | |
run_lora.zerogpu = True | |
css = ''' | |
#gen_btn{height: 100%} | |
#gen_column{align-self: stretch} | |
#title{text-align: center} | |
#title h1{font-size: 3em; display:inline-flex; align-items:center} | |
#title img{width: 100px; margin-right: 0.5em} | |
#gallery .grid-wrap{height: 10vh} | |
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%} | |
.card_internal{display: flex;height: 100px;margin-top: .5em} | |
.card_internal img{margin-right: 1em} | |
.styler{--form-gap-width: 0px !important} | |
#speed_status{padding: .5em; border-radius: 5px; margin: 1em 0} | |
''' | |
with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 60)) as app: | |
title = gr.HTML( | |
"""<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png" alt="Qwen-Image" style="width: 280px; margin: 0 auto"> | |
<h3 style="margin-top: -10px">LoRA Explorer</h3>""", | |
elem_id="title", | |
) | |
selected_index = gr.State(None) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA") | |
with gr.Column(scale=1, elem_id="gen_column"): | |
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") | |
with gr.Row(): | |
with gr.Column(): | |
selected_info = gr.Markdown("") | |
gallery = gr.Gallery( | |
[(item["image"], item["title"]) for item in loras], | |
label="LoRA Gallery", | |
allow_preview=False, | |
columns=3, | |
elem_id="gallery", | |
show_share_button=False | |
) | |
with gr.Group(): | |
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="username/qwen-image-custom-lora") | |
gr.Markdown("[Check Qwen-Image LoRAs](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list") | |
custom_lora_info = gr.HTML(visible=False) | |
custom_lora_button = gr.Button("Remove custom LoRA", visible=False) | |
with gr.Column(): | |
result = gr.Image(label="Generated Image") | |
with gr.Row(): | |
speed_mode = gr.Radio( | |
label="Generation Mode", | |
choices=["Speed (8 steps)", "Quality (45 steps)"], | |
value="Quality (45 steps)", | |
info="Speed mode uses Lightning LoRA for faster generation" | |
) | |
speed_status = gr.Markdown("Quality mode active", elem_id="speed_status") | |
with gr.Row(): | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Column(): | |
with gr.Row(): | |
aspect_ratio = gr.Radio( | |
label="Aspect Ratio", | |
choices=["1:1", "16:9", "9:16", "4:3", "3:4", "3:2", "2:3"], | |
value="1:1" | |
) | |
with gr.Row(): | |
cfg_scale = gr.Slider( | |
label="Guidance Scale (True CFG)", | |
minimum=1.0, | |
maximum=5.0, | |
step=0.1, | |
value=3.5, | |
info="Lower for speed mode, higher for quality" | |
) | |
steps = gr.Slider( | |
label="Steps", | |
minimum=4, | |
maximum=50, | |
step=1, | |
value=45, | |
info="Automatically set by speed mode" | |
) | |
with gr.Row(): | |
randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) | |
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=1.0) | |
# Event handlers | |
gallery.select( | |
update_selection, | |
inputs=[aspect_ratio], | |
outputs=[prompt, selected_info, selected_index, aspect_ratio] | |
) | |
speed_mode.change( | |
handle_speed_mode, | |
inputs=[speed_mode], | |
outputs=[speed_status, steps, cfg_scale] | |
) | |
custom_lora.input( | |
add_custom_lora, | |
inputs=[custom_lora], | |
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt] | |
) | |
custom_lora_button.click( | |
remove_custom_lora, | |
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora] | |
) | |
gr.on( | |
triggers=[generate_button.click, prompt.submit], | |
fn=run_lora, | |
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode], | |
outputs=[result, seed] | |
) | |
app.queue() | |
app.launch() |