Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,966 Bytes
8ce917e b99f8e6 c216f09 26fae49 c216f09 f9c0642 1c367c8 8ce917e 3a9bb57 8ce917e 6608da4 8ce917e c9cb9a7 8ce917e c9cb9a7 8ce917e c9cb9a7 3590498 8ce917e c9cb9a7 8ce917e c9cb9a7 8ce917e c9cb9a7 8ce917e c9cb9a7 8ce917e c9cb9a7 8ce917e f4c7b90 8ce917e a15ca67 8ce917e a15ca67 8ce917e 3cd4c05 8ce917e 3590498 8ce917e a4fd555 8ce917e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
import re
import math
import numpy as np
# Load LoRAs from JSON
loras = [
{
"repo": "flymy-ai/qwen-image-realism-lora",
"image": "https://huggingface.co/flymy-ai/qwen-image-realism-lora/resolve/main/assets/flymy_realism.png",
"trigger_word": "Super Realism portrait of",
"trigger_position": "prepend",
"title": "Super Realism"
},
{
"repo": "threecrowco/VolkClipartQwen",
"image": "https://huggingface.co/threecrowco/VolkClipartQwen/resolve/main/images/_app_ai-toolkit_output_VolkDrawings_Qwen_v1_samples_1754805220500__000003000_3.jpg",
"trigger_word": "volk clipart, black and white, ",
"trigger_position": "prepend",
"title": "Volk Clipart"
},
{
"repo": "janekm/analog_film",
"image": "https://huggingface.co/spaces/multimodalart/Qwen-Image-LoRA-Explorer/resolve/main/cat.webp",
"trigger_word": "fifthel",
"trigger_position": "prepend",
"weights": "converted_complete.safetensors",
"title": "Analog Film"
},
{
"repo": "itspoidaman/qwenglitch",
"image": "https://huggingface.co/itspoidaman/qwenglitch/resolve/main/images/GydaJ5LbEAAWKJU.jpeg",
"trigger_word": "qwenglitch",
"title": "Glitch"
},
{
"repo": "alfredplpl/qwen-image-modern-anime-lora",
"image": "https://huggingface.co/alfredplpl/qwen-image-modern-anime-lora/resolve/main/sample1.jpg",
"trigger_word": "Japanese modern anime style, ",
"trigger_position": "prepend",
"title": "Modern Anime"
},
{
"repo": "lichorosario/qwen-image-dottrmstr",
"image": "https://huggingface.co/lichorosario/qwen-image-dottrmstr/resolve/main/images/Day_of_the_Tentacle_Remastered_(PC)_08.jpg",
"trigger_word": "DOTTRMSTR",
"trigger_position": "prepend",
"title": "Day of the Tentacle Style"
}
]
# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "Qwen/Qwen-Image"
# Scheduler configuration from the Qwen-Image-Lightning repository
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
pipe = DiffusionPipeline.from_pretrained(
base_model, scheduler=scheduler, torch_dtype=dtype
).to(device)
# Lightning LoRA info (no global state)
LIGHTNING_LORA_REPO = "lightx2v/Qwen-Image-Lightning"
LIGHTNING_LORA_WEIGHT = "Qwen-Image-Lightning-8steps-V1.0.safetensors"
MAX_SEED = np.iinfo(np.int32).max
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def get_image_size(aspect_ratio):
"""Converts aspect ratio string to width, height tuple."""
if aspect_ratio == "1:1":
return 1024, 1024
elif aspect_ratio == "16:9":
return 1152, 640
elif aspect_ratio == "9:16":
return 640, 1152
elif aspect_ratio == "4:3":
return 1024, 768
elif aspect_ratio == "3:4":
return 768, 1024
elif aspect_ratio == "3:2":
return 1024, 688
elif aspect_ratio == "2:3":
return 688, 1024
else:
return 1024, 1024
def update_selection(evt: gr.SelectData, aspect_ratio):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
# Update aspect ratio if specified in LoRA config
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
aspect_ratio = "9:16"
elif selected_lora["aspect"] == "landscape":
aspect_ratio = "16:9"
else:
aspect_ratio = "1:1"
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
aspect_ratio,
)
def handle_speed_mode(speed_mode):
"""Update UI based on speed/quality toggle."""
if speed_mode == "Speed (8 steps)":
return gr.update(value="Speed mode selected - 8 steps with Lightning LoRA"), 8, 1.0
else:
return gr.update(value="Quality mode selected - 45 steps for best quality"), 45, 3.5
@spaces.GPU(duration=70)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, negative_prompt=""):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
image = pipe(
prompt=prompt_mash,
negative_prompt=negative_prompt,
num_inference_steps=steps,
true_cfg_scale=cfg_scale, # Use true_cfg_scale for Qwen-Image
width=width,
height=height,
generator=generator,
).images[0]
return image
@spaces.GPU(duration=70)
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, progress=gr.Progress(track_tqdm=True)):
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
# Prepare prompt with trigger word
if trigger_word:
if "trigger_position" in selected_lora:
if selected_lora["trigger_position"] == "prepend":
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = f"{prompt} {trigger_word}"
else:
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = prompt
# Always unload any existing LoRAs first to avoid conflicts
with calculateDuration("Unloading existing LoRAs"):
pipe.unload_lora_weights()
# Load LoRAs based on speed mode
if speed_mode == "Speed (8 steps)":
with calculateDuration("Loading Lightning LoRA and style LoRA"):
# Load Lightning LoRA first
pipe.load_lora_weights(
LIGHTNING_LORA_REPO,
weight_name=LIGHTNING_LORA_WEIGHT,
adapter_name="lightning"
)
# Load the selected style LoRA
weight_name = selected_lora.get("weights", None)
pipe.load_lora_weights(
lora_path,
weight_name=weight_name,
low_cpu_mem_usage=True,
adapter_name="style"
)
# Set both adapters active with their weights
pipe.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale])
else:
# Quality mode - only load the style LoRA
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
weight_name = selected_lora.get("weights", None)
pipe.load_lora_weights(
lora_path,
weight_name=weight_name,
low_cpu_mem_usage=True
)
# Set random seed for reproducibility
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Get image dimensions from aspect ratio
width, height = get_image_size(aspect_ratio)
# Generate the image
final_image = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
return final_image, seed
def get_huggingface_safetensors(link):
split_link = link.split("/")
if len(split_link) != 2:
raise Exception("Invalid Hugging Face repository link format.")
print(f"Repository attempted: {split_link}")
# Load model card
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(f"Base model: {base_model}")
# Validate model type (for Qwen-Image)
acceptable_models = {"Qwen/Qwen-Image"}
models_to_check = base_model if isinstance(base_model, list) else [base_model]
if not any(model in acceptable_models for model in models_to_check):
raise Exception("Not a Qwen-Image LoRA!")
# Extract image and trigger word
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
# Initialize Hugging Face file system
fs = HfFileSystem()
try:
list_of_files = fs.ls(link, detail=False)
# Find safetensors file
safetensors_name = None
for file in list_of_files:
filename = file.split("/")[-1]
if filename.endswith(".safetensors"):
safetensors_name = filename
break
if not safetensors_name:
raise Exception("No valid *.safetensors file found in the repository.")
except Exception as e:
print(e)
raise Exception("You didn't include a valid Hugging Face repository with a *.safetensors LoRA")
return split_link[1], link, safetensors_name, trigger_word, image_url
def check_custom_model(link):
print(f"Checking a custom model on: {link}")
if link.endswith('.safetensors'):
if 'huggingface.co' in link:
parts = link.split('/')
try:
hf_index = parts.index('huggingface.co')
username = parts[hf_index + 1]
repo_name = parts[hf_index + 2]
repo = f"{username}/{repo_name}"
safetensors_name = parts[-1]
try:
model_card = ModelCard.load(repo)
trigger_word = model_card.data.get("instance_prompt", "")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
image_url = f"https://huggingface.co/{repo}/resolve/main/{image_path}" if image_path else None
except:
trigger_word = ""
image_url = None
return repo_name, repo, safetensors_name, trigger_word, image_url
except:
raise Exception("Invalid safetensors URL format")
if link.startswith("https://"):
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
else:
return get_huggingface_safetensors(link)
def add_custom_lora(custom_lora):
global loras
if custom_lora:
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
card = f'''
<div class="custom_lora_card">
<span>Loaded custom LoRA:</span>
<div class="card_internal">
<img src="{image}" />
<div>
<h3>{title}</h3>
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
</div>
</div>
</div>
'''
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
if existing_item_index is None:
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(new_item)
loras.append(new_item)
existing_item_index = len(loras) - 1 # Get the actual index after adding
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
except Exception as e:
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen-Image LoRA, this was the issue: {e}")
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen-Image LoRA"), gr.update(visible=True), gr.update(), "", None, ""
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_lora():
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
run_lora.zerogpu = True
css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#speed_status{padding: .5em; border-radius: 5px; margin: 1em 0}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 60)) as app:
title = gr.HTML(
"""<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png" alt="Qwen-Image" style="width: 280px; margin: 0 auto">
<h3 style="margin-top: -10px">LoRA Explorer</h3>""",
elem_id="title",
)
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column():
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Gallery",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False
)
with gr.Group():
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="username/qwen-image-custom-lora")
gr.Markdown("[Check Qwen-Image LoRAs](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list")
custom_lora_info = gr.HTML(visible=False)
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
with gr.Column():
result = gr.Image(label="Generated Image")
with gr.Row():
speed_mode = gr.Radio(
label="Generation Mode",
choices=["Speed (8 steps)", "Quality (45 steps)"],
value="Quality (45 steps)",
info="Speed mode uses Lightning LoRA for faster generation"
)
speed_status = gr.Markdown("Quality mode active", elem_id="speed_status")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Column():
with gr.Row():
aspect_ratio = gr.Radio(
label="Aspect Ratio",
choices=["1:1", "16:9", "9:16", "4:3", "3:4", "3:2", "2:3"],
value="1:1"
)
with gr.Row():
cfg_scale = gr.Slider(
label="Guidance Scale (True CFG)",
minimum=1.0,
maximum=5.0,
step=0.1,
value=3.5,
info="Lower for speed mode, higher for quality"
)
steps = gr.Slider(
label="Steps",
minimum=4,
maximum=50,
step=1,
value=45,
info="Automatically set by speed mode"
)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=1.0)
# Event handlers
gallery.select(
update_selection,
inputs=[aspect_ratio],
outputs=[prompt, selected_info, selected_index, aspect_ratio]
)
speed_mode.change(
handle_speed_mode,
inputs=[speed_mode],
outputs=[speed_status, steps, cfg_scale]
)
custom_lora.input(
add_custom_lora,
inputs=[custom_lora],
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
)
custom_lora_button.click(
remove_custom_lora,
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode],
outputs=[result, seed]
)
app.queue()
app.launch() |