Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import json
|
4 |
+
import logging
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
import spaces
|
8 |
+
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
|
9 |
+
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
10 |
+
import copy
|
11 |
+
import random
|
12 |
+
import time
|
13 |
+
import re
|
14 |
+
import math
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
# Load LoRAs from JSON
|
18 |
+
loras = [
|
19 |
+
{
|
20 |
+
"repo": "flymy-ai/qwen-image-realism-lora",
|
21 |
+
"image": "https://huggingface.co/flymy-ai/qwen-image-realism-lora/resolve/main/assets/flymy_realism.png",
|
22 |
+
"trigger_word": "Super Realism portrait of",
|
23 |
+
"trigger_position": "prepend",
|
24 |
+
"title": "Super Realism"
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"repo": "valiantcat/Qwen-Image-Gufeng-LoRA",
|
28 |
+
"image": "https://huggingface.co/valiantcat/Qwen-Image-Gufeng-LoRA/resolve/main/result/output1.png",
|
29 |
+
"trigger_word": "gfwm, The image is a digital illustration",
|
30 |
+
"trigger_position": "prepend",
|
31 |
+
"title": "Gufeng Style"
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"repo": "lichorosario/qwen-image-dottrmstr",
|
35 |
+
"image": "https://huggingface.co/lichorosario/qwen-image-dottrmstr/resolve/main/images/Day_of_the_Tentacle_Remastered_(PC)_08.jpg",
|
36 |
+
"trigger_word": "DOTTRMSTR",
|
37 |
+
"trigger_position": "prepend",
|
38 |
+
"title": "Day of the Tentacle Style"
|
39 |
+
}
|
40 |
+
]
|
41 |
+
|
42 |
+
# Initialize the base model
|
43 |
+
dtype = torch.bfloat16
|
44 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
45 |
+
base_model = "Qwen/Qwen-Image"
|
46 |
+
|
47 |
+
# Scheduler configuration from the Qwen-Image-Lightning repository
|
48 |
+
scheduler_config = {
|
49 |
+
"base_image_seq_len": 256,
|
50 |
+
"base_shift": math.log(3),
|
51 |
+
"invert_sigmas": False,
|
52 |
+
"max_image_seq_len": 8192,
|
53 |
+
"max_shift": math.log(3),
|
54 |
+
"num_train_timesteps": 1000,
|
55 |
+
"shift": 1.0,
|
56 |
+
"shift_terminal": None,
|
57 |
+
"stochastic_sampling": False,
|
58 |
+
"time_shift_type": "exponential",
|
59 |
+
"use_beta_sigmas": False,
|
60 |
+
"use_dynamic_shifting": True,
|
61 |
+
"use_exponential_sigmas": False,
|
62 |
+
"use_karras_sigmas": False,
|
63 |
+
}
|
64 |
+
|
65 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
|
66 |
+
pipe = DiffusionPipeline.from_pretrained(
|
67 |
+
base_model, scheduler=scheduler, torch_dtype=dtype
|
68 |
+
).to(device)
|
69 |
+
|
70 |
+
# Store Lightning LoRA info
|
71 |
+
lightning_lora = {
|
72 |
+
"repo": "lightx2v/Qwen-Image-Lightning",
|
73 |
+
"weight_name": "Qwen-Image-Lightning-8steps-V1.0.safetensors",
|
74 |
+
"loaded": False
|
75 |
+
}
|
76 |
+
|
77 |
+
MAX_SEED = np.iinfo(np.int32).max
|
78 |
+
|
79 |
+
class calculateDuration:
|
80 |
+
def __init__(self, activity_name=""):
|
81 |
+
self.activity_name = activity_name
|
82 |
+
|
83 |
+
def __enter__(self):
|
84 |
+
self.start_time = time.time()
|
85 |
+
return self
|
86 |
+
|
87 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
88 |
+
self.end_time = time.time()
|
89 |
+
self.elapsed_time = self.end_time - self.start_time
|
90 |
+
if self.activity_name:
|
91 |
+
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
|
92 |
+
else:
|
93 |
+
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
94 |
+
|
95 |
+
def get_image_size(aspect_ratio):
|
96 |
+
"""Converts aspect ratio string to width, height tuple."""
|
97 |
+
if aspect_ratio == "1:1":
|
98 |
+
return 1024, 1024
|
99 |
+
elif aspect_ratio == "16:9":
|
100 |
+
return 1152, 640
|
101 |
+
elif aspect_ratio == "9:16":
|
102 |
+
return 640, 1152
|
103 |
+
elif aspect_ratio == "4:3":
|
104 |
+
return 1024, 768
|
105 |
+
elif aspect_ratio == "3:4":
|
106 |
+
return 768, 1024
|
107 |
+
elif aspect_ratio == "3:2":
|
108 |
+
return 1024, 688
|
109 |
+
elif aspect_ratio == "2:3":
|
110 |
+
return 688, 1024
|
111 |
+
else:
|
112 |
+
return 1024, 1024
|
113 |
+
|
114 |
+
def update_selection(evt: gr.SelectData, aspect_ratio):
|
115 |
+
selected_lora = loras[evt.index]
|
116 |
+
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
117 |
+
lora_repo = selected_lora["repo"]
|
118 |
+
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
|
119 |
+
|
120 |
+
# Update aspect ratio if specified in LoRA config
|
121 |
+
if "aspect" in selected_lora:
|
122 |
+
if selected_lora["aspect"] == "portrait":
|
123 |
+
aspect_ratio = "9:16"
|
124 |
+
elif selected_lora["aspect"] == "landscape":
|
125 |
+
aspect_ratio = "16:9"
|
126 |
+
else:
|
127 |
+
aspect_ratio = "1:1"
|
128 |
+
|
129 |
+
return (
|
130 |
+
gr.update(placeholder=new_placeholder),
|
131 |
+
updated_text,
|
132 |
+
evt.index,
|
133 |
+
aspect_ratio,
|
134 |
+
)
|
135 |
+
|
136 |
+
def handle_speed_mode(speed_mode):
|
137 |
+
"""Handle the speed/quality toggle for Lightning LoRA."""
|
138 |
+
global lightning_lora
|
139 |
+
|
140 |
+
if speed_mode == "Speed (8 steps)":
|
141 |
+
# Load Lightning LoRA if not already loaded
|
142 |
+
if not lightning_lora["loaded"]:
|
143 |
+
with calculateDuration("Loading Lightning LoRA"):
|
144 |
+
pipe.load_lora_weights(
|
145 |
+
lightning_lora["repo"],
|
146 |
+
weight_name=lightning_lora["weight_name"],
|
147 |
+
adapter_name="lightning"
|
148 |
+
)
|
149 |
+
lightning_lora["loaded"] = True
|
150 |
+
return gr.update(value="Lightning LoRA loaded for fast generation"), 8, 1.0
|
151 |
+
return gr.update(value="Lightning LoRA already loaded"), 8, 1.0
|
152 |
+
else: # Quality mode
|
153 |
+
# Unload Lightning LoRA if loaded
|
154 |
+
if lightning_lora["loaded"]:
|
155 |
+
with calculateDuration("Unloading Lightning LoRA"):
|
156 |
+
pipe.unload_lora_weights()
|
157 |
+
lightning_lora["loaded"] = False
|
158 |
+
return gr.update(value="Lightning LoRA unloaded for quality generation"), 28, 3.5
|
159 |
+
return gr.update(value="Quality mode active"), 28, 3.5
|
160 |
+
|
161 |
+
@spaces.GPU(duration=70)
|
162 |
+
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, negative_prompt=""):
|
163 |
+
pipe.to("cuda")
|
164 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
165 |
+
|
166 |
+
with calculateDuration("Generating image"):
|
167 |
+
# Generate image
|
168 |
+
image = pipe(
|
169 |
+
prompt=prompt_mash,
|
170 |
+
negative_prompt=negative_prompt,
|
171 |
+
num_inference_steps=steps,
|
172 |
+
true_cfg_scale=cfg_scale, # Use true_cfg_scale for Qwen-Image
|
173 |
+
width=width,
|
174 |
+
height=height,
|
175 |
+
generator=generator,
|
176 |
+
).images[0]
|
177 |
+
|
178 |
+
return image
|
179 |
+
|
180 |
+
@spaces.GPU(duration=70)
|
181 |
+
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, progress=gr.Progress(track_tqdm=True)):
|
182 |
+
if selected_index is None:
|
183 |
+
raise gr.Error("You must select a LoRA before proceeding.")
|
184 |
+
|
185 |
+
selected_lora = loras[selected_index]
|
186 |
+
lora_path = selected_lora["repo"]
|
187 |
+
trigger_word = selected_lora["trigger_word"]
|
188 |
+
|
189 |
+
# Prepare prompt with trigger word
|
190 |
+
if trigger_word:
|
191 |
+
if "trigger_position" in selected_lora:
|
192 |
+
if selected_lora["trigger_position"] == "prepend":
|
193 |
+
prompt_mash = f"{trigger_word} {prompt}"
|
194 |
+
else:
|
195 |
+
prompt_mash = f"{prompt} {trigger_word}"
|
196 |
+
else:
|
197 |
+
prompt_mash = f"{trigger_word} {prompt}"
|
198 |
+
else:
|
199 |
+
prompt_mash = prompt
|
200 |
+
|
201 |
+
# First, handle Lightning LoRA based on speed mode
|
202 |
+
global lightning_lora
|
203 |
+
if speed_mode == "Speed (8 steps)" and not lightning_lora["loaded"]:
|
204 |
+
with calculateDuration("Loading Lightning LoRA"):
|
205 |
+
pipe.load_lora_weights(
|
206 |
+
lightning_lora["repo"],
|
207 |
+
weight_name=lightning_lora["weight_name"],
|
208 |
+
adapter_name="lightning"
|
209 |
+
)
|
210 |
+
lightning_lora["loaded"] = True
|
211 |
+
elif speed_mode == "Quality (28 steps)" and lightning_lora["loaded"]:
|
212 |
+
with calculateDuration("Unloading Lightning LoRA"):
|
213 |
+
pipe.unload_lora_weights()
|
214 |
+
lightning_lora["loaded"] = False
|
215 |
+
|
216 |
+
# Load the selected style LoRA
|
217 |
+
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
218 |
+
weight_name = selected_lora.get("weights", None)
|
219 |
+
|
220 |
+
# If Lightning is loaded, we need to handle multiple LoRAs
|
221 |
+
if lightning_lora["loaded"]:
|
222 |
+
pipe.load_lora_weights(
|
223 |
+
lora_path,
|
224 |
+
weight_name=weight_name,
|
225 |
+
low_cpu_mem_usage=True,
|
226 |
+
adapter_name="style"
|
227 |
+
)
|
228 |
+
# Set both adapters active
|
229 |
+
pipe.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale])
|
230 |
+
else:
|
231 |
+
pipe.load_lora_weights(
|
232 |
+
lora_path,
|
233 |
+
weight_name=weight_name,
|
234 |
+
low_cpu_mem_usage=True
|
235 |
+
)
|
236 |
+
|
237 |
+
# Set random seed for reproducibility
|
238 |
+
with calculateDuration("Randomizing seed"):
|
239 |
+
if randomize_seed:
|
240 |
+
seed = random.randint(0, MAX_SEED)
|
241 |
+
|
242 |
+
# Get image dimensions from aspect ratio
|
243 |
+
width, height = get_image_size(aspect_ratio)
|
244 |
+
|
245 |
+
# Generate the image
|
246 |
+
final_image = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
|
247 |
+
|
248 |
+
return final_image, seed
|
249 |
+
|
250 |
+
def get_huggingface_safetensors(link):
|
251 |
+
split_link = link.split("/")
|
252 |
+
if len(split_link) != 2:
|
253 |
+
raise Exception("Invalid Hugging Face repository link format.")
|
254 |
+
|
255 |
+
print(f"Repository attempted: {split_link}")
|
256 |
+
|
257 |
+
# Load model card
|
258 |
+
model_card = ModelCard.load(link)
|
259 |
+
base_model = model_card.data.get("base_model")
|
260 |
+
print(f"Base model: {base_model}")
|
261 |
+
|
262 |
+
# Validate model type (for Qwen-Image)
|
263 |
+
acceptable_models = {"Qwen/Qwen-Image"}
|
264 |
+
|
265 |
+
models_to_check = base_model if isinstance(base_model, list) else [base_model]
|
266 |
+
|
267 |
+
if not any(model in acceptable_models for model in models_to_check):
|
268 |
+
raise Exception("Not a Qwen-Image LoRA!")
|
269 |
+
|
270 |
+
# Extract image and trigger word
|
271 |
+
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
272 |
+
trigger_word = model_card.data.get("instance_prompt", "")
|
273 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
274 |
+
|
275 |
+
# Initialize Hugging Face file system
|
276 |
+
fs = HfFileSystem()
|
277 |
+
try:
|
278 |
+
list_of_files = fs.ls(link, detail=False)
|
279 |
+
|
280 |
+
# Find safetensors file
|
281 |
+
safetensors_name = None
|
282 |
+
for file in list_of_files:
|
283 |
+
filename = file.split("/")[-1]
|
284 |
+
if filename.endswith(".safetensors"):
|
285 |
+
safetensors_name = filename
|
286 |
+
break
|
287 |
+
|
288 |
+
if not safetensors_name:
|
289 |
+
raise Exception("No valid *.safetensors file found in the repository.")
|
290 |
+
|
291 |
+
except Exception as e:
|
292 |
+
print(e)
|
293 |
+
raise Exception("You didn't include a valid Hugging Face repository with a *.safetensors LoRA")
|
294 |
+
|
295 |
+
return split_link[1], link, safetensors_name, trigger_word, image_url
|
296 |
+
|
297 |
+
def check_custom_model(link):
|
298 |
+
print(f"Checking a custom model on: {link}")
|
299 |
+
if link.startswith("https://"):
|
300 |
+
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
|
301 |
+
link_split = link.split("huggingface.co/")
|
302 |
+
return get_huggingface_safetensors(link_split[1])
|
303 |
+
else:
|
304 |
+
return get_huggingface_safetensors(link)
|
305 |
+
|
306 |
+
def add_custom_lora(custom_lora):
|
307 |
+
global loras
|
308 |
+
if custom_lora:
|
309 |
+
try:
|
310 |
+
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
|
311 |
+
print(f"Loaded custom LoRA: {repo}")
|
312 |
+
card = f'''
|
313 |
+
<div class="custom_lora_card">
|
314 |
+
<span>Loaded custom LoRA:</span>
|
315 |
+
<div class="card_internal">
|
316 |
+
<img src="{image}" />
|
317 |
+
<div>
|
318 |
+
<h3>{title}</h3>
|
319 |
+
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
|
320 |
+
</div>
|
321 |
+
</div>
|
322 |
+
</div>
|
323 |
+
'''
|
324 |
+
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
|
325 |
+
if not existing_item_index:
|
326 |
+
new_item = {
|
327 |
+
"image": image,
|
328 |
+
"title": title,
|
329 |
+
"repo": repo,
|
330 |
+
"weights": path,
|
331 |
+
"trigger_word": trigger_word
|
332 |
+
}
|
333 |
+
print(new_item)
|
334 |
+
existing_item_index = len(loras)
|
335 |
+
loras.append(new_item)
|
336 |
+
|
337 |
+
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
|
338 |
+
except Exception as e:
|
339 |
+
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen-Image LoRA, this was the issue: {e}")
|
340 |
+
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen-Image LoRA"), gr.update(visible=True), gr.update(), "", None, ""
|
341 |
+
else:
|
342 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
343 |
+
|
344 |
+
def remove_custom_lora():
|
345 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
346 |
+
|
347 |
+
run_lora.zerogpu = True
|
348 |
+
|
349 |
+
css = '''
|
350 |
+
#gen_btn{height: 100%}
|
351 |
+
#gen_column{align-self: stretch}
|
352 |
+
#title{text-align: center}
|
353 |
+
#title h1{font-size: 3em; display:inline-flex; align-items:center}
|
354 |
+
#title img{width: 100px; margin-right: 0.5em}
|
355 |
+
#gallery .grid-wrap{height: 10vh}
|
356 |
+
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
|
357 |
+
.card_internal{display: flex;height: 100px;margin-top: .5em}
|
358 |
+
.card_internal img{margin-right: 1em}
|
359 |
+
.styler{--form-gap-width: 0px !important}
|
360 |
+
#speed_status{padding: .5em; border-radius: 5px; margin: 1em 0}
|
361 |
+
'''
|
362 |
+
|
363 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 60)) as app:
|
364 |
+
title = gr.HTML(
|
365 |
+
"""<h1><img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png" alt="Qwen-Image" style="height: 100px; margin-right: 10px; vertical-align: middle;"> Qwen-Image LoRA Explorer</h1>""",
|
366 |
+
elem_id="title",
|
367 |
+
)
|
368 |
+
|
369 |
+
selected_index = gr.State(None)
|
370 |
+
|
371 |
+
with gr.Row():
|
372 |
+
with gr.Column(scale=3):
|
373 |
+
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
|
374 |
+
with gr.Column(scale=1, elem_id="gen_column"):
|
375 |
+
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
376 |
+
|
377 |
+
with gr.Row():
|
378 |
+
with gr.Column():
|
379 |
+
selected_info = gr.Markdown("")
|
380 |
+
gallery = gr.Gallery(
|
381 |
+
[(item["image"], item["title"]) for item in loras],
|
382 |
+
label="LoRA Gallery",
|
383 |
+
allow_preview=False,
|
384 |
+
columns=3,
|
385 |
+
elem_id="gallery",
|
386 |
+
show_share_button=False
|
387 |
+
)
|
388 |
+
with gr.Group():
|
389 |
+
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="username/qwen-image-custom-lora")
|
390 |
+
gr.Markdown("[Check Qwen-Image LoRAs](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list")
|
391 |
+
custom_lora_info = gr.HTML(visible=False)
|
392 |
+
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
393 |
+
|
394 |
+
with gr.Column():
|
395 |
+
result = gr.Image(label="Generated Image")
|
396 |
+
|
397 |
+
with gr.Row():
|
398 |
+
speed_mode = gr.Radio(
|
399 |
+
label="Generation Mode",
|
400 |
+
choices=["Speed (8 steps)", "Quality (28 steps)"],
|
401 |
+
value="Quality (28 steps)",
|
402 |
+
info="Speed mode uses Lightning LoRA for faster generation"
|
403 |
+
)
|
404 |
+
|
405 |
+
speed_status = gr.Markdown("Quality mode active", elem_id="speed_status")
|
406 |
+
|
407 |
+
with gr.Row():
|
408 |
+
with gr.Accordion("Advanced Settings", open=False):
|
409 |
+
with gr.Column():
|
410 |
+
with gr.Row():
|
411 |
+
aspect_ratio = gr.Radio(
|
412 |
+
label="Aspect Ratio",
|
413 |
+
choices=["1:1", "16:9", "9:16", "4:3", "3:4", "3:2", "2:3"],
|
414 |
+
value="1:1"
|
415 |
+
)
|
416 |
+
|
417 |
+
with gr.Row():
|
418 |
+
cfg_scale = gr.Slider(
|
419 |
+
label="Guidance Scale (True CFG)",
|
420 |
+
minimum=1.0,
|
421 |
+
maximum=5.0,
|
422 |
+
step=0.1,
|
423 |
+
value=3.5,
|
424 |
+
info="Lower for speed mode, higher for quality"
|
425 |
+
)
|
426 |
+
steps = gr.Slider(
|
427 |
+
label="Steps",
|
428 |
+
minimum=4,
|
429 |
+
maximum=50,
|
430 |
+
step=1,
|
431 |
+
value=28,
|
432 |
+
info="Automatically set by speed mode"
|
433 |
+
)
|
434 |
+
|
435 |
+
with gr.Row():
|
436 |
+
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
437 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
438 |
+
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=1.0)
|
439 |
+
|
440 |
+
# Event handlers
|
441 |
+
gallery.select(
|
442 |
+
update_selection,
|
443 |
+
inputs=[aspect_ratio],
|
444 |
+
outputs=[prompt, selected_info, selected_index, aspect_ratio]
|
445 |
+
)
|
446 |
+
|
447 |
+
speed_mode.change(
|
448 |
+
handle_speed_mode,
|
449 |
+
inputs=[speed_mode],
|
450 |
+
outputs=[speed_status, steps, cfg_scale]
|
451 |
+
)
|
452 |
+
|
453 |
+
custom_lora.input(
|
454 |
+
add_custom_lora,
|
455 |
+
inputs=[custom_lora],
|
456 |
+
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
|
457 |
+
)
|
458 |
+
|
459 |
+
custom_lora_button.click(
|
460 |
+
remove_custom_lora,
|
461 |
+
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
|
462 |
+
)
|
463 |
+
|
464 |
+
gr.on(
|
465 |
+
triggers=[generate_button.click, prompt.submit],
|
466 |
+
fn=run_lora,
|
467 |
+
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode],
|
468 |
+
outputs=[result, seed]
|
469 |
+
)
|
470 |
+
|
471 |
+
app.queue()
|
472 |
+
app.launch()
|