File size: 18,361 Bytes
deafbd7 cb4e5b3 deafbd7 9a2a3bc deafbd7 cb4e5b3 deafbd7 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc 3e2ff2f deafbd7 9a2a3bc deafbd7 9a2a3bc 3e2ff2f 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc 3e2ff2f cb4e5b3 9a2a3bc deafbd7 3e2ff2f 9a2a3bc 0cc5955 9a2a3bc 3e2ff2f 9a2a3bc 3e2ff2f 9a2a3bc 0cc5955 9a2a3bc 3e2ff2f deafbd7 9a2a3bc deafbd7 3e2ff2f 0cc5955 9a2a3bc deafbd7 3e2ff2f deafbd7 cb4e5b3 9a2a3bc deafbd7 9a2a3bc 3e2ff2f 9a2a3bc 3e2ff2f cb4e5b3 3e2ff2f deafbd7 cb4e5b3 9a2a3bc 3e2ff2f cb4e5b3 3e2ff2f cb4e5b3 3e2ff2f cb4e5b3 3e2ff2f 0cc5955 9a2a3bc 0cc5955 9a2a3bc 3e2ff2f 9a2a3bc cb4e5b3 9a2a3bc cb4e5b3 9a2a3bc 0cc5955 9a2a3bc cb4e5b3 9a2a3bc 3e2ff2f 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc 0cc5955 9a2a3bc 0cc5955 9a2a3bc 3e2ff2f cb4e5b3 3e2ff2f 0cc5955 3e2ff2f 9a2a3bc 3e2ff2f 0cc5955 3e2ff2f 0cc5955 3e2ff2f deafbd7 9a2a3bc 3e2ff2f 0cc5955 3e2ff2f 9a2a3bc 0cc5955 9a2a3bc 3e2ff2f 9a2a3bc 3e2ff2f 9a2a3bc deafbd7 3e2ff2f 9a2a3bc 0cc5955 3e2ff2f 9a2a3bc 3e2ff2f 9a2a3bc deafbd7 9a2a3bc deafbd7 0cc5955 3e2ff2f 0cc5955 9a2a3bc 3e2ff2f 9a2a3bc 0cc5955 9a2a3bc 3e2ff2f 9a2a3bc 3e2ff2f 9a2a3bc cb4e5b3 3e2ff2f 0cc5955 9a2a3bc 0cc5955 9a2a3bc cb4e5b3 deafbd7 9a2a3bc 0cc5955 cb4e5b3 0cc5955 cb4e5b3 9a2a3bc 0cc5955 9a2a3bc cb4e5b3 9a2a3bc 3e2ff2f cb4e5b3 0cc5955 9a2a3bc 0cc5955 3e2ff2f cb4e5b3 0cc5955 9a2a3bc cb4e5b3 0cc5955 cb4e5b3 3e2ff2f 9a2a3bc 3e2ff2f 9a2a3bc 0cc5955 3e2ff2f cb4e5b3 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 deafbd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import mimetypes
import os
import re
import shutil
from typing import Optional
import tempfile
from PIL import Image as PILImage
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
from smolagents.agents import ActionStep, MultiStepAgent
from smolagents.memory import MemoryStep
from smolagents.utils import _is_package_available
import gradio as gr
def pull_messages_from_step_dict(step_log: MemoryStep):
"""Extract messages as dicts for Gradio type='messages' Chatbot"""
if isinstance(step_log, ActionStep):
step_number_str = f"Step {step_log.step_number}" if step_log.step_number is not None else "Processing"
yield {"role": "assistant", "content": f"**{step_number_str}**"}
if hasattr(step_log, "model_output") and step_log.model_output is not None:
model_output = step_log.model_output.strip()
model_output = re.sub(r"```\s*<end_code>[\s\S]*|[\s\S]*<end_code>\s*```", "```", model_output, flags=re.DOTALL)
model_output = re.sub(r"<end_code>", "", model_output)
model_output = model_output.strip()
yield {"role": "assistant", "content": model_output}
if hasattr(step_log, "tool_calls") and step_log.tool_calls:
tc = step_log.tool_calls[0]
tool_info_md = f"🛠️ **Tool Used: {tc.name}**\n"
args = tc.arguments
if isinstance(args, dict):
args_str = str(args.get("answer", str(args)))
else:
args_str = str(args).strip()
if tc.name == "python_interpreter":
code_content = args_str
code_content = re.sub(r"^```python\s*\n?", "", code_content)
code_content = re.sub(r"\n?```\s*$", "", code_content)
code_content = re.sub(r"^\s*<end_code>\s*", "", code_content)
code_content = re.sub(r"\s*<end_code>\s*$", "", code_content)
code_content = code_content.strip()
tool_info_md += f"Executing Code:\n```python\n{code_content}\n```\n"
else:
tool_info_md += f"Arguments: `{args_str}`\n"
if hasattr(step_log, "observations") and step_log.observations and step_log.observations.strip():
obs_content = step_log.observations.strip()
obs_content = re.sub(r"^Execution logs:\s*", "", obs_content).strip()
if obs_content:
tool_info_md += f"📝 **Tool Output/Logs:**\n```text\n{obs_content}\n```\n"
if hasattr(step_log, "error") and step_log.error:
tool_info_md += f"💥 **Error:** {str(step_log.error)}\n"
yield {"role": "assistant", "content": tool_info_md.strip()}
elif hasattr(step_log, "error") and step_log.error:
yield {"role": "assistant", "content": f"💥 **Error:** {str(step_log.error)}"}
footnote_parts = []
if step_log.step_number is not None:
footnote_parts.append(f"Step {step_log.step_number}")
if hasattr(step_log, "duration") and step_log.duration is not None:
footnote_parts.append(f"Duration: {round(float(step_log.duration), 2)}s")
if hasattr(step_log, "input_token_count") and step_log.input_token_count is not None:
footnote_parts.append(f"InTokens: {step_log.input_token_count:,}")
if hasattr(step_log, "output_token_count") and step_log.output_token_count is not None:
footnote_parts.append(f"OutTokens: {step_log.output_token_count:,}")
if footnote_parts:
footnote_text = " | ".join(footnote_parts)
yield {"role": "assistant", "content": f"""<p style="color: #999; font-size: 0.8em; margin-top:0; margin-bottom:0;">{footnote_text}</p>"""}
yield {"role": "assistant", "content": "---"}
def stream_to_gradio(
agent,
task: str,
reset_agent_memory: bool = False,
additional_args: Optional[dict] = None,
):
if not _is_package_available("gradio"):
raise ModuleNotFoundError("Install 'gradio': `pip install 'smolagents[gradio]'`")
if hasattr(agent, 'interaction_logs'):
agent.interaction_logs.clear()
print("DEBUG Gradio: Cleared agent interaction_logs for new run.")
all_step_logs = []
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
all_step_logs.append(step_log)
if hasattr(agent.model, "last_input_token_count") and agent.model.last_input_token_count is not None:
if isinstance(step_log, ActionStep):
step_log.input_token_count = agent.model.last_input_token_count
step_log.output_token_count = agent.model.last_output_token_count
for msg_dict in pull_messages_from_step_dict(step_log):
yield msg_dict
if not all_step_logs:
yield {"role": "assistant", "content": "Agent did not produce any output."}
return
final_answer_content = all_step_logs[-1]
actual_content_for_handling = final_answer_content
if hasattr(final_answer_content, 'final_answer') and not isinstance(final_answer_content, (str, PILImage.Image)):
actual_content_for_handling = final_answer_content.final_answer
print(f"DEBUG Gradio: Extracted actual_content_for_handling from FinalAnswerStep: {type(actual_content_for_handling)}")
if isinstance(actual_content_for_handling, PILImage.Image):
print("DEBUG Gradio (stream_to_gradio): Actual content IS a raw PIL Image.")
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
actual_content_for_handling.save(tmp_file, format="PNG")
image_path_for_gradio = tmp_file.name
print(f"DEBUG Gradio: Saved PIL image to temp path: {image_path_for_gradio}")
# MODIFIED: Yield tuple (filepath, alt_text)
yield {"role": "assistant", "content": (image_path_for_gradio, "Generated Image")}
return
except Exception as e:
print(f"DEBUG Gradio: Error saving extracted PIL image: {e}")
yield {"role": "assistant", "content": f"**Final Answer (Error displaying image):** {e}"}
return
final_answer_processed = handle_agent_output_types(actual_content_for_handling)
print(f"DEBUG Gradio: final_answer_processed type after handle_agent_output_types: {type(final_answer_processed)}")
if isinstance(final_answer_processed, AgentText):
yield {"role": "assistant", "content": f"**Final Answer:**\n{final_answer_processed.to_string()}"}
elif isinstance(final_answer_processed, AgentImage):
image_path = final_answer_processed.to_string()
print(f"DEBUG Gradio (stream_to_gradio): final_answer_processed is AgentImage. Path: {image_path}")
if image_path and os.path.exists(image_path):
# MODIFIED: Yield tuple (filepath, alt_text)
yield {"role": "assistant", "content": (image_path, "Generated Image (from AgentImage)")}
else:
err_msg = f"Error: Image path from AgentImage ('{image_path}') not found or invalid."
print(f"DEBUG Gradio: {err_msg}")
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
elif isinstance(final_answer_processed, AgentAudio):
audio_path = final_answer_processed.to_string()
print(f"DEBUG Gradio (stream_to_gradio): AgentAudio path: {audio_path}")
if audio_path and os.path.exists(audio_path):
# MODIFIED: Yield tuple (filepath, alt_text) for consistency, though Gradio might just use path for audio
yield {"role": "assistant", "content": (audio_path, "Generated Audio")}
else:
err_msg = f"Error: Audio path from AgentAudio ('{audio_path}') not found"
print(f"DEBUG Gradio: {err_msg}")
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
else:
yield {"role": "assistant", "content": f"**Final Answer:**\n{str(final_answer_processed)}"}
class GradioUI:
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
if not _is_package_available("gradio"):
raise ModuleNotFoundError("Install 'gradio': `pip install 'smolagents[gradio]'`")
self.agent = agent
self.file_upload_folder = file_upload_folder
if self.file_upload_folder is not None:
if not os.path.exists(self.file_upload_folder):
os.makedirs(self.file_upload_folder, exist_ok=True)
self._latest_file_path_for_download = None
def _check_for_created_file(self):
self._latest_file_path_for_download = None
if hasattr(self.agent, 'interaction_logs') and self.agent.interaction_logs:
print(f"DEBUG Gradio UI: Checking {len(self.agent.interaction_logs)} interaction log entries for created files.")
for log_entry in reversed(self.agent.interaction_logs):
if isinstance(log_entry, ActionStep):
observations = getattr(log_entry, 'observations', None)
if observations and isinstance(observations, str):
print(f"DEBUG Gradio UI: Checking observations: {observations[:200]}")
path_match = re.search(r"(/tmp/[a-zA-Z0-9_]+/generated_document\.(?:docx|pdf|txt))", observations)
if path_match:
extracted_path = path_match.group(1)
normalized_path = os.path.normpath(extracted_path)
if os.path.exists(normalized_path):
self._latest_file_path_for_download = normalized_path
print(f"DEBUG Gradio UI: File path for download set (from observations): {self._latest_file_path_for_download}")
return True
else:
print(f"DEBUG Gradio UI: Path from observations ('{normalized_path}') does not exist.")
print("DEBUG Gradio UI: No valid generated file path found in agent logs for download.")
return False
def interact_with_agent(self, prompt_text: str, current_chat_history: list):
print(f"DEBUG Gradio: interact_with_agent called with prompt: '{prompt_text}'")
print(f"DEBUG Gradio: Current chat history (input type {type(current_chat_history)}): {current_chat_history}")
updated_chat_history = current_chat_history + [{"role": "user", "content": prompt_text}]
yield updated_chat_history, gr.update(visible=False), gr.update(value=None, visible=False)
agent_responses_for_history = []
for msg_dict in stream_to_gradio(self.agent, task=prompt_text, reset_agent_memory=False):
agent_responses_for_history.append(msg_dict)
yield updated_chat_history + agent_responses_for_history, gr.update(visible=False), gr.update(value=None, visible=False)
file_found = self._check_for_created_file()
final_chat_display = updated_chat_history + agent_responses_for_history
print(f"DEBUG Gradio: Final chat history for display: {len(final_chat_display)} messages.")
yield final_chat_display, gr.update(visible=file_found), gr.update(value=None, visible=False)
def upload_file(self, file, file_uploads_log_state):
if file is None:
return gr.update(value="No file uploaded.", visible=True), file_uploads_log_state
if not self.file_upload_folder or not os.path.exists(self.file_upload_folder):
os.makedirs(self.file_upload_folder, exist_ok=True)
allowed_file_types = [
"application/pdf",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"text/plain", "image/jpeg", "image/png",
]
original_name = file.orig_name if hasattr(file, 'orig_name') and file.orig_name else os.path.basename(file.name)
mime_type, _ = mimetypes.guess_type(file.name)
if mime_type is None:
mime_type, _ = mimetypes.guess_type(original_name)
if mime_type not in allowed_file_types:
return gr.update(value=f"File type '{mime_type or 'unknown'}' for '{original_name}' is disallowed.", visible=True), file_uploads_log_state
sanitized_name = re.sub(r"[^\w\-.]", "_", original_name)
base_name, current_ext = os.path.splitext(sanitized_name)
common_mime_to_ext = {
"application/pdf": ".pdf",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document": ".docx",
"text/plain": ".txt", "image/jpeg": ".jpg", "image/png": ".png"
}
expected_ext = common_mime_to_ext.get(mime_type)
if expected_ext and current_ext.lower() != expected_ext.lower():
sanitized_name = base_name + expected_ext
destination_path = os.path.join(self.file_upload_folder, sanitized_name)
try:
shutil.copy(file.name, destination_path)
print(f"DEBUG Gradio: File '{original_name}' copied to '{destination_path}'")
updated_log = file_uploads_log_state + [destination_path]
return gr.update(value=f"Uploaded: {original_name}", visible=True), updated_log
except Exception as e:
print(f"DEBUG Gradio: Error copying uploaded file: {e}")
return gr.update(value=f"Error uploading {original_name}: {e}", visible=True), file_uploads_log_state
def log_user_message(self, text_input_value: str, current_file_uploads: list):
full_prompt = text_input_value
if current_file_uploads:
files_str = ", ".join([os.path.basename(f) for f in current_file_uploads])
full_prompt += f"\n\n[Uploaded files for context: {files_str}]"
print(f"DEBUG Gradio: Prepared prompt for agent: {full_prompt[:300]}...")
return full_prompt, ""
def prepare_and_show_download_file(self):
if self._latest_file_path_for_download and os.path.exists(self._latest_file_path_for_download):
print(f"DEBUG Gradio UI: Preparing download for UI component: {self._latest_file_path_for_download}")
return gr.File.update(value=self._latest_file_path_for_download,
label=os.path.basename(self._latest_file_path_for_download),
visible=True)
else:
print("DEBUG Gradio UI: No valid file path to prepare for download component.")
return gr.File.update(visible=False, value=None)
def launch(self, **kwargs):
with gr.Blocks(fill_height=True, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue)) as demo:
file_uploads_log_state = gr.State([])
prepared_prompt_for_agent = gr.State("")
gr.Markdown("## Smol Talk with your Agent")
with gr.Row(equal_height=False):
with gr.Column(scale=3):
chatbot_display = gr.Chatbot(
label="Agent Interaction",
type="messages",
avatar_images=(None, "https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-round.png"),
height=700,
show_copy_button=True,
bubble_full_width=False,
show_label=False
)
text_message_input = gr.Textbox(
lines=1,
label="Your Message to the Agent",
placeholder="Type your message and press Enter, or Shift+Enter for new line...",
show_label=False
)
with gr.Column(scale=1):
with gr.Accordion("File Upload", open=False):
file_uploader = gr.File(label="Upload a supporting file (PDF, DOCX, TXT, JPG, PNG)")
upload_status_text = gr.Textbox(label="Upload Status", interactive=False, lines=1)
file_uploader.upload(
self.upload_file,
[file_uploader, file_uploads_log_state],
[upload_status_text, file_uploads_log_state],
)
with gr.Accordion("Generated File", open=True):
download_action_button = gr.Button("Download Generated File", visible=False)
file_download_display_component = gr.File(label="Downloadable Document", visible=False, interactive=False)
text_message_input.submit(
self.log_user_message,
[text_message_input, file_uploads_log_state],
[prepared_prompt_for_agent, text_message_input]
).then(
self.interact_with_agent,
[prepared_prompt_for_agent, chatbot_display],
[chatbot_display, download_action_button, file_download_display_component]
)
download_action_button.click(
self.prepare_and_show_download_file,
[],
[file_download_display_component]
)
demo.launch(debug=True, share=kwargs.get("share", False), **kwargs)
__all__ = ["stream_to_gradio", "GradioUI"] |