Update Gradio_UI.py
Browse files- Gradio_UI.py +119 -108
Gradio_UI.py
CHANGED
@@ -36,14 +36,13 @@ def pull_messages_from_step_dict(step_log: MemoryStep):
|
|
36 |
|
37 |
if hasattr(step_log, "model_output") and step_log.model_output is not None:
|
38 |
model_output = step_log.model_output.strip()
|
39 |
-
# More robust cleaning for <end_code> potentially wrapped in backticks or with newlines
|
40 |
model_output = re.sub(r"```\s*<end_code>[\s\S]*|[\s\S]*<end_code>\s*```", "```", model_output, flags=re.DOTALL)
|
41 |
-
model_output = re.sub(r"<end_code>", "", model_output)
|
42 |
model_output = model_output.strip()
|
43 |
yield {"role": "assistant", "content": model_output}
|
44 |
|
45 |
if hasattr(step_log, "tool_calls") and step_log.tool_calls:
|
46 |
-
tc = step_log.tool_calls[0]
|
47 |
tool_info_md = f"🛠️ **Tool Used: {tc.name}**\n"
|
48 |
|
49 |
args = tc.arguments
|
@@ -54,7 +53,6 @@ def pull_messages_from_step_dict(step_log: MemoryStep):
|
|
54 |
|
55 |
if tc.name == "python_interpreter":
|
56 |
code_content = args_str
|
57 |
-
# Clean up common wrapping issues
|
58 |
code_content = re.sub(r"^```python\s*\n?", "", code_content)
|
59 |
code_content = re.sub(r"\n?```\s*$", "", code_content)
|
60 |
code_content = re.sub(r"^\s*<end_code>\s*", "", code_content)
|
@@ -66,34 +64,32 @@ def pull_messages_from_step_dict(step_log: MemoryStep):
|
|
66 |
|
67 |
if hasattr(step_log, "observations") and step_log.observations and step_log.observations.strip():
|
68 |
obs_content = step_log.observations.strip()
|
69 |
-
# Remove "Execution logs:" prefix if present for cleaner display
|
70 |
obs_content = re.sub(r"^Execution logs:\s*", "", obs_content).strip()
|
71 |
-
if obs_content:
|
72 |
-
tool_info_md += f"📝 **Tool Output/Logs:**\n
|
73 |
|
74 |
if hasattr(step_log, "error") and step_log.error:
|
75 |
tool_info_md += f"💥 **Error:** {str(step_log.error)}\n"
|
76 |
|
77 |
yield {"role": "assistant", "content": tool_info_md.strip()}
|
78 |
|
79 |
-
elif hasattr(step_log, "error") and step_log.error:
|
80 |
yield {"role": "assistant", "content": f"💥 **Error:** {str(step_log.error)}"}
|
81 |
|
82 |
-
# --- Minimal footnote for type="messages" ---
|
83 |
footnote_parts = []
|
84 |
if step_log.step_number is not None:
|
85 |
footnote_parts.append(f"Step {step_log.step_number}")
|
86 |
if hasattr(step_log, "duration") and step_log.duration is not None:
|
87 |
footnote_parts.append(f"Duration: {round(float(step_log.duration), 2)}s")
|
88 |
-
if hasattr(step_log, "input_token_count") and step_log.input_token_count is not None:
|
89 |
footnote_parts.append(f"InTokens: {step_log.input_token_count:,}")
|
90 |
-
if hasattr(step_log, "output_token_count") and step_log.output_token_count is not None:
|
91 |
footnote_parts.append(f"OutTokens: {step_log.output_token_count:,}")
|
92 |
|
93 |
if footnote_parts:
|
94 |
footnote_text = " | ".join(footnote_parts)
|
95 |
yield {"role": "assistant", "content": f"""<p style="color: #999; font-size: 0.8em; margin-top:0; margin-bottom:0;">{footnote_text}</p>"""}
|
96 |
-
yield {"role": "assistant", "content": "---"}
|
97 |
|
98 |
|
99 |
def stream_to_gradio(
|
@@ -102,34 +98,41 @@ def stream_to_gradio(
|
|
102 |
reset_agent_memory: bool = False,
|
103 |
additional_args: Optional[dict] = None,
|
104 |
):
|
105 |
-
"""Runs an agent, yields message dicts for Gradio type='messages' Chatbot."""
|
106 |
if not _is_package_available("gradio"):
|
107 |
raise ModuleNotFoundError("Install 'gradio': `pip install 'smolagents[gradio]'`")
|
108 |
|
109 |
-
if hasattr(agent, 'interaction_logs'):
|
110 |
agent.interaction_logs.clear()
|
111 |
print("DEBUG Gradio: Cleared agent interaction_logs for new run.")
|
112 |
|
|
|
|
|
113 |
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
|
|
|
114 |
if hasattr(agent.model, "last_input_token_count") and agent.model.last_input_token_count is not None:
|
115 |
if isinstance(step_log, ActionStep):
|
116 |
step_log.input_token_count = agent.model.last_input_token_count
|
117 |
step_log.output_token_count = agent.model.last_output_token_count
|
118 |
|
119 |
-
for msg_dict in pull_messages_from_step_dict(step_log):
|
120 |
yield msg_dict
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
final_answer_content =
|
123 |
|
124 |
# --- Handle final answer for type="messages" ---
|
125 |
if isinstance(final_answer_content, PILImage.Image):
|
126 |
-
print("DEBUG Gradio (stream_to_gradio): Final answer
|
127 |
try:
|
|
|
128 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
|
129 |
final_answer_content.save(tmp_file, format="PNG")
|
130 |
image_path_for_gradio = tmp_file.name
|
131 |
-
print(f"DEBUG Gradio: Saved PIL image to temp path: {image_path_for_gradio}")
|
132 |
-
# For Gradio type="messages", image content is just the path string
|
133 |
yield {"role": "assistant", "content": image_path_for_gradio}
|
134 |
return
|
135 |
except Exception as e:
|
@@ -137,17 +140,43 @@ def stream_to_gradio(
|
|
137 |
yield {"role": "assistant", "content": f"**Final Answer (Error displaying image):** {e}"}
|
138 |
return
|
139 |
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
if isinstance(final_answer_processed, AgentText):
|
143 |
yield {"role": "assistant", "content": f"**Final Answer:**\n{final_answer_processed.to_string()}"}
|
144 |
elif isinstance(final_answer_processed, AgentImage):
|
145 |
image_path = final_answer_processed.to_string()
|
146 |
-
print(f"DEBUG Gradio (stream_to_gradio): AgentImage
|
147 |
if image_path and os.path.exists(image_path):
|
148 |
yield {"role": "assistant", "content": image_path}
|
149 |
else:
|
150 |
-
err_msg = f"Error: Image path from AgentImage not found or invalid
|
151 |
print(f"DEBUG Gradio: {err_msg}")
|
152 |
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
|
153 |
elif isinstance(final_answer_processed, AgentAudio):
|
@@ -156,16 +185,15 @@ def stream_to_gradio(
|
|
156 |
if audio_path and os.path.exists(audio_path):
|
157 |
yield {"role": "assistant", "content": audio_path}
|
158 |
else:
|
159 |
-
err_msg = f"Error: Audio path from AgentAudio
|
160 |
print(f"DEBUG Gradio: {err_msg}")
|
161 |
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
|
162 |
else:
|
|
|
163 |
yield {"role": "assistant", "content": f"**Final Answer:**\n{str(final_answer_processed)}"}
|
164 |
|
165 |
|
166 |
class GradioUI:
|
167 |
-
"""A one-line interface to launch your agent in Gradio"""
|
168 |
-
|
169 |
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
|
170 |
if not _is_package_available("gradio"):
|
171 |
raise ModuleNotFoundError("Install 'gradio': `pip install 'smolagents[gradio]'`")
|
@@ -180,82 +208,65 @@ class GradioUI:
|
|
180 |
self._latest_file_path_for_download = None
|
181 |
if hasattr(self.agent, 'interaction_logs') and self.agent.interaction_logs:
|
182 |
print(f"DEBUG Gradio UI: Checking {len(self.agent.interaction_logs)} interaction log entries for created files.")
|
183 |
-
for log_entry in reversed(self.agent.interaction_logs):
|
184 |
-
if isinstance(log_entry, ActionStep)
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
else:
|
204 |
-
print(f"DEBUG Gradio UI: 'create_document' tool reported error in observations: {extracted_path}")
|
205 |
-
print("DEBUG Gradio UI: No valid 'create_document' output found for download.")
|
206 |
return False
|
207 |
|
208 |
-
def interact_with_agent(self, prompt_text: str,
|
209 |
-
# current_chat_tuples is the history from the chatbot (list of lists/tuples)
|
210 |
-
# Convert to 'messages' format if needed, or adapt stream_to_gradio if chatbot is not type="messages"
|
211 |
-
# For type="messages", current_chat_tuples is already list of dicts.
|
212 |
-
|
213 |
print(f"DEBUG Gradio: interact_with_agent called with prompt: '{prompt_text}'")
|
214 |
-
print(f"DEBUG Gradio: Current chat history (input): {
|
215 |
|
216 |
-
#
|
217 |
-
|
218 |
|
219 |
-
|
220 |
-
yield current_chat_messages, gr.update(visible=False), gr.update(value=None, visible=False)
|
221 |
|
222 |
-
# Stream agent messages
|
223 |
agent_responses_for_history = []
|
224 |
for msg_dict in stream_to_gradio(self.agent, task=prompt_text, reset_agent_memory=False):
|
225 |
agent_responses_for_history.append(msg_dict)
|
226 |
-
|
227 |
-
yield current_chat_messages + agent_responses_for_history, gr.update(visible=False), gr.update(value=None, visible=False)
|
228 |
|
229 |
-
# After streaming all agent messages, check for created file
|
230 |
file_found = self._check_for_created_file()
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
print(f"DEBUG Gradio: Final chat history for display: {final_chat_display}")
|
235 |
yield final_chat_display, gr.update(visible=file_found), gr.update(value=None, visible=False)
|
236 |
|
237 |
-
|
238 |
def upload_file(self, file, file_uploads_log_state):
|
239 |
-
if file is None:
|
240 |
return gr.update(value="No file uploaded.", visible=True), file_uploads_log_state
|
241 |
|
242 |
-
# Ensure file_upload_folder exists (it should from __init__)
|
243 |
if not self.file_upload_folder or not os.path.exists(self.file_upload_folder):
|
244 |
-
os.makedirs(self.file_upload_folder, exist_ok=True)
|
245 |
|
246 |
allowed_file_types = [
|
247 |
"application/pdf",
|
248 |
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
|
249 |
-
"text/plain",
|
250 |
-
"image/jpeg", "image/png", # Added image types
|
251 |
]
|
252 |
|
253 |
-
|
254 |
-
original_name = file.orig_name if hasattr(file, 'orig_name') else os.path.basename(file.name)
|
255 |
|
256 |
-
# Try to guess mime type from temp file name first, then from original name if needed
|
257 |
mime_type, _ = mimetypes.guess_type(file.name)
|
258 |
-
if mime_type is None:
|
259 |
mime_type, _ = mimetypes.guess_type(original_name)
|
260 |
|
261 |
if mime_type not in allowed_file_types:
|
@@ -264,13 +275,13 @@ class GradioUI:
|
|
264 |
sanitized_name = re.sub(r"[^\w\-.]", "_", original_name)
|
265 |
base_name, current_ext = os.path.splitext(sanitized_name)
|
266 |
|
267 |
-
|
268 |
-
|
269 |
"application/pdf": ".pdf",
|
270 |
"application/vnd.openxmlformats-officedocument.wordprocessingml.document": ".docx",
|
271 |
"text/plain": ".txt", "image/jpeg": ".jpg", "image/png": ".png"
|
272 |
-
}
|
273 |
-
expected_ext =
|
274 |
|
275 |
if expected_ext and current_ext.lower() != expected_ext.lower():
|
276 |
sanitized_name = base_name + expected_ext
|
@@ -278,22 +289,21 @@ class GradioUI:
|
|
278 |
destination_path = os.path.join(self.file_upload_folder, sanitized_name)
|
279 |
|
280 |
try:
|
281 |
-
shutil.copy(file.name, destination_path)
|
282 |
print(f"DEBUG Gradio: File '{original_name}' copied to '{destination_path}'")
|
283 |
updated_log = file_uploads_log_state + [destination_path]
|
284 |
-
return gr.update(value=f"Uploaded: {original_name}
|
285 |
except Exception as e:
|
286 |
print(f"DEBUG Gradio: Error copying uploaded file: {e}")
|
287 |
return gr.update(value=f"Error uploading {original_name}: {e}", visible=True), file_uploads_log_state
|
288 |
|
289 |
-
|
290 |
def log_user_message(self, text_input_value: str, current_file_uploads: list):
|
291 |
full_prompt = text_input_value
|
292 |
if current_file_uploads:
|
293 |
files_str = ", ".join([os.path.basename(f) for f in current_file_uploads])
|
294 |
full_prompt += f"\n\n[Uploaded files for context: {files_str}]"
|
295 |
-
print(f"DEBUG Gradio: Prepared prompt for agent: {full_prompt}")
|
296 |
-
return full_prompt, ""
|
297 |
|
298 |
def prepare_and_show_download_file(self):
|
299 |
if self._latest_file_path_for_download and os.path.exists(self._latest_file_path_for_download):
|
@@ -303,56 +313,57 @@ class GradioUI:
|
|
303 |
visible=True)
|
304 |
else:
|
305 |
print("DEBUG Gradio UI: No valid file path to prepare for download component.")
|
306 |
-
gr.Warning("No file available for download or path is invalid.")
|
307 |
-
return gr.File.update(visible=False)
|
308 |
|
309 |
def launch(self, **kwargs):
|
310 |
with gr.Blocks(fill_height=True, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue)) as demo:
|
311 |
file_uploads_log_state = gr.State([])
|
312 |
prepared_prompt_for_agent = gr.State("")
|
313 |
|
314 |
-
gr.Markdown("
|
315 |
|
316 |
-
with gr.Row():
|
317 |
with gr.Column(scale=3):
|
318 |
chatbot_display = gr.Chatbot(
|
319 |
label="Agent Interaction",
|
320 |
type="messages",
|
321 |
avatar_images=(None, "https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-round.png"),
|
322 |
-
height=
|
323 |
show_copy_button=True,
|
324 |
-
bubble_full_width=False
|
|
|
325 |
)
|
326 |
text_message_input = gr.Textbox(
|
327 |
lines=1,
|
328 |
label="Your Message to the Agent",
|
329 |
-
placeholder="Type your message and press Enter, or Shift+Enter for new line..."
|
|
|
330 |
)
|
331 |
|
332 |
with gr.Column(scale=1):
|
333 |
if self.file_upload_folder is not None:
|
334 |
-
gr.
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
|
343 |
-
gr.
|
344 |
-
|
345 |
-
|
346 |
|
347 |
-
# Event Handling Chain for Text Submission
|
348 |
text_message_input.submit(
|
349 |
-
self.log_user_message,
|
350 |
[text_message_input, file_uploads_log_state],
|
351 |
[prepared_prompt_for_agent, text_message_input]
|
352 |
).then(
|
353 |
-
self.interact_with_agent,
|
354 |
-
[prepared_prompt_for_agent, chatbot_display],
|
355 |
-
[chatbot_display, download_action_button, file_download_display_component]
|
356 |
)
|
357 |
|
358 |
download_action_button.click(
|
@@ -360,7 +371,7 @@ class GradioUI:
|
|
360 |
[],
|
361 |
[file_download_display_component]
|
362 |
)
|
363 |
-
|
364 |
demo.launch(debug=True, share=kwargs.get("share", False), **kwargs)
|
365 |
|
366 |
__all__ = ["stream_to_gradio", "GradioUI"]
|
|
|
36 |
|
37 |
if hasattr(step_log, "model_output") and step_log.model_output is not None:
|
38 |
model_output = step_log.model_output.strip()
|
|
|
39 |
model_output = re.sub(r"```\s*<end_code>[\s\S]*|[\s\S]*<end_code>\s*```", "```", model_output, flags=re.DOTALL)
|
40 |
+
model_output = re.sub(r"<end_code>", "", model_output)
|
41 |
model_output = model_output.strip()
|
42 |
yield {"role": "assistant", "content": model_output}
|
43 |
|
44 |
if hasattr(step_log, "tool_calls") and step_log.tool_calls:
|
45 |
+
tc = step_log.tool_calls[0]
|
46 |
tool_info_md = f"🛠️ **Tool Used: {tc.name}**\n"
|
47 |
|
48 |
args = tc.arguments
|
|
|
53 |
|
54 |
if tc.name == "python_interpreter":
|
55 |
code_content = args_str
|
|
|
56 |
code_content = re.sub(r"^```python\s*\n?", "", code_content)
|
57 |
code_content = re.sub(r"\n?```\s*$", "", code_content)
|
58 |
code_content = re.sub(r"^\s*<end_code>\s*", "", code_content)
|
|
|
64 |
|
65 |
if hasattr(step_log, "observations") and step_log.observations and step_log.observations.strip():
|
66 |
obs_content = step_log.observations.strip()
|
|
|
67 |
obs_content = re.sub(r"^Execution logs:\s*", "", obs_content).strip()
|
68 |
+
if obs_content:
|
69 |
+
tool_info_md += f"📝 **Tool Output/Logs:**\n```text\n{obs_content}\n```\n" # Use text for generic logs
|
70 |
|
71 |
if hasattr(step_log, "error") and step_log.error:
|
72 |
tool_info_md += f"💥 **Error:** {str(step_log.error)}\n"
|
73 |
|
74 |
yield {"role": "assistant", "content": tool_info_md.strip()}
|
75 |
|
76 |
+
elif hasattr(step_log, "error") and step_log.error:
|
77 |
yield {"role": "assistant", "content": f"💥 **Error:** {str(step_log.error)}"}
|
78 |
|
|
|
79 |
footnote_parts = []
|
80 |
if step_log.step_number is not None:
|
81 |
footnote_parts.append(f"Step {step_log.step_number}")
|
82 |
if hasattr(step_log, "duration") and step_log.duration is not None:
|
83 |
footnote_parts.append(f"Duration: {round(float(step_log.duration), 2)}s")
|
84 |
+
if hasattr(step_log, "input_token_count") and step_log.input_token_count is not None:
|
85 |
footnote_parts.append(f"InTokens: {step_log.input_token_count:,}")
|
86 |
+
if hasattr(step_log, "output_token_count") and step_log.output_token_count is not None:
|
87 |
footnote_parts.append(f"OutTokens: {step_log.output_token_count:,}")
|
88 |
|
89 |
if footnote_parts:
|
90 |
footnote_text = " | ".join(footnote_parts)
|
91 |
yield {"role": "assistant", "content": f"""<p style="color: #999; font-size: 0.8em; margin-top:0; margin-bottom:0;">{footnote_text}</p>"""}
|
92 |
+
yield {"role": "assistant", "content": "---"}
|
93 |
|
94 |
|
95 |
def stream_to_gradio(
|
|
|
98 |
reset_agent_memory: bool = False,
|
99 |
additional_args: Optional[dict] = None,
|
100 |
):
|
|
|
101 |
if not _is_package_available("gradio"):
|
102 |
raise ModuleNotFoundError("Install 'gradio': `pip install 'smolagents[gradio]'`")
|
103 |
|
104 |
+
if hasattr(agent, 'interaction_logs'):
|
105 |
agent.interaction_logs.clear()
|
106 |
print("DEBUG Gradio: Cleared agent interaction_logs for new run.")
|
107 |
|
108 |
+
# This will collect all step_log objects from the agent run
|
109 |
+
all_step_logs = []
|
110 |
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
|
111 |
+
all_step_logs.append(step_log) # Store the log
|
112 |
if hasattr(agent.model, "last_input_token_count") and agent.model.last_input_token_count is not None:
|
113 |
if isinstance(step_log, ActionStep):
|
114 |
step_log.input_token_count = agent.model.last_input_token_count
|
115 |
step_log.output_token_count = agent.model.last_output_token_count
|
116 |
|
117 |
+
for msg_dict in pull_messages_from_step_dict(step_log):
|
118 |
yield msg_dict
|
119 |
+
|
120 |
+
# After the loop, the last item in all_step_logs is the final output/state from agent.run
|
121 |
+
if not all_step_logs: # Should not happen if agent.run yields at least one thing
|
122 |
+
yield {"role": "assistant", "content": "Agent did not produce any output."}
|
123 |
+
return
|
124 |
|
125 |
+
final_answer_content = all_step_logs[-1] # This is what final_answer tool returns or the last ActionStep.final_answer
|
126 |
|
127 |
# --- Handle final answer for type="messages" ---
|
128 |
if isinstance(final_answer_content, PILImage.Image):
|
129 |
+
print("DEBUG Gradio (stream_to_gradio): Final answer content IS a raw PIL Image.")
|
130 |
try:
|
131 |
+
# delete=False is crucial for Gradio to access the file before it's cleaned up
|
132 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
|
133 |
final_answer_content.save(tmp_file, format="PNG")
|
134 |
image_path_for_gradio = tmp_file.name
|
135 |
+
print(f"DEBUG Gradio: Saved PIL image to temp path for display: {image_path_for_gradio}")
|
|
|
136 |
yield {"role": "assistant", "content": image_path_for_gradio}
|
137 |
return
|
138 |
except Exception as e:
|
|
|
140 |
yield {"role": "assistant", "content": f"**Final Answer (Error displaying image):** {e}"}
|
141 |
return
|
142 |
|
143 |
+
# If not a raw PIL Image, then try smolagents processing from handle_agent_output_types
|
144 |
+
# The 'final_answer_content' here could be a FinalAnswerStep object or similar
|
145 |
+
# We need to extract the actual content from it if it's a wrapper.
|
146 |
+
actual_content_for_handling = final_answer_content
|
147 |
+
if hasattr(final_answer_content, 'final_answer') and not isinstance(final_answer_content, (str, PILImage.Image)):
|
148 |
+
actual_content_for_handling = final_answer_content.final_answer
|
149 |
+
print(f"DEBUG Gradio: Extracted actual_content_for_handling from FinalAnswerStep: {type(actual_content_for_handling)}")
|
150 |
+
|
151 |
+
|
152 |
+
# Re-check if the extracted content is a PIL Image
|
153 |
+
if isinstance(actual_content_for_handling, PILImage.Image):
|
154 |
+
print("DEBUG Gradio (stream_to_gradio): Extracted content IS a raw PIL Image.")
|
155 |
+
try:
|
156 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
|
157 |
+
actual_content_for_handling.save(tmp_file, format="PNG")
|
158 |
+
image_path_for_gradio = tmp_file.name
|
159 |
+
print(f"DEBUG Gradio: Saved extracted PIL image to temp path: {image_path_for_gradio}")
|
160 |
+
yield {"role": "assistant", "content": image_path_for_gradio}
|
161 |
+
return
|
162 |
+
except Exception as e:
|
163 |
+
print(f"DEBUG Gradio: Error saving extracted PIL image: {e}")
|
164 |
+
yield {"role": "assistant", "content": f"**Final Answer (Error displaying image from extracted content):** {e}"}
|
165 |
+
return
|
166 |
+
|
167 |
+
final_answer_processed = handle_agent_output_types(actual_content_for_handling)
|
168 |
+
print(f"DEBUG Gradio: final_answer_processed type after handle_agent_output_types: {type(final_answer_processed)}")
|
169 |
+
|
170 |
|
171 |
if isinstance(final_answer_processed, AgentText):
|
172 |
yield {"role": "assistant", "content": f"**Final Answer:**\n{final_answer_processed.to_string()}"}
|
173 |
elif isinstance(final_answer_processed, AgentImage):
|
174 |
image_path = final_answer_processed.to_string()
|
175 |
+
print(f"DEBUG Gradio (stream_to_gradio): final_answer_processed is AgentImage. Path: {image_path}")
|
176 |
if image_path and os.path.exists(image_path):
|
177 |
yield {"role": "assistant", "content": image_path}
|
178 |
else:
|
179 |
+
err_msg = f"Error: Image path from AgentImage ('{image_path}') not found or invalid after smolagents processing."
|
180 |
print(f"DEBUG Gradio: {err_msg}")
|
181 |
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
|
182 |
elif isinstance(final_answer_processed, AgentAudio):
|
|
|
185 |
if audio_path and os.path.exists(audio_path):
|
186 |
yield {"role": "assistant", "content": audio_path}
|
187 |
else:
|
188 |
+
err_msg = f"Error: Audio path from AgentAudio ('{audio_path}') not found"
|
189 |
print(f"DEBUG Gradio: {err_msg}")
|
190 |
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
|
191 |
else:
|
192 |
+
# This will display the string representation of FinalAnswerStep if not handled above
|
193 |
yield {"role": "assistant", "content": f"**Final Answer:**\n{str(final_answer_processed)}"}
|
194 |
|
195 |
|
196 |
class GradioUI:
|
|
|
|
|
197 |
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
|
198 |
if not _is_package_available("gradio"):
|
199 |
raise ModuleNotFoundError("Install 'gradio': `pip install 'smolagents[gradio]'`")
|
|
|
208 |
self._latest_file_path_for_download = None
|
209 |
if hasattr(self.agent, 'interaction_logs') and self.agent.interaction_logs:
|
210 |
print(f"DEBUG Gradio UI: Checking {len(self.agent.interaction_logs)} interaction log entries for created files.")
|
211 |
+
for log_entry in reversed(self.agent.interaction_logs):
|
212 |
+
if isinstance(log_entry, ActionStep):
|
213 |
+
observations = getattr(log_entry, 'observations', None)
|
214 |
+
tool_calls = getattr(log_entry, 'tool_calls', [])
|
215 |
+
|
216 |
+
# Check if python_interpreter was used AND its code involved create_document
|
217 |
+
# For simplicity, we'll primarily rely on parsing observations for the path pattern
|
218 |
+
if observations and isinstance(observations, str):
|
219 |
+
# This regex should match paths printed by your create_document tool
|
220 |
+
path_match = re.search(r"(/tmp/[a-zA-Z0-9_]+/generated_document\.(?:docx|pdf|txt))", observations)
|
221 |
+
if path_match:
|
222 |
+
extracted_path = path_match.group(1)
|
223 |
+
normalized_path = os.path.normpath(extracted_path)
|
224 |
+
if os.path.exists(normalized_path):
|
225 |
+
self._latest_file_path_for_download = normalized_path
|
226 |
+
print(f"DEBUG Gradio UI: File path for download set (from observations): {self._latest_file_path_for_download}")
|
227 |
+
return True
|
228 |
+
else:
|
229 |
+
print(f"DEBUG Gradio UI: Path from observations ('{normalized_path}') does not exist.")
|
230 |
+
print("DEBUG Gradio UI: No valid generated file path found in agent logs for download.")
|
|
|
|
|
|
|
231 |
return False
|
232 |
|
233 |
+
def interact_with_agent(self, prompt_text: str, current_chat_history: list):
|
|
|
|
|
|
|
|
|
234 |
print(f"DEBUG Gradio: interact_with_agent called with prompt: '{prompt_text}'")
|
235 |
+
print(f"DEBUG Gradio: Current chat history (input type {type(current_chat_history)}): {current_chat_history}")
|
236 |
|
237 |
+
# current_chat_history from gr.Chatbot(type="messages") is already a list of dicts
|
238 |
+
updated_chat_history = current_chat_history + [{"role": "user", "content": prompt_text}]
|
239 |
|
240 |
+
yield updated_chat_history, gr.update(visible=False), gr.update(value=None, visible=False)
|
|
|
241 |
|
|
|
242 |
agent_responses_for_history = []
|
243 |
for msg_dict in stream_to_gradio(self.agent, task=prompt_text, reset_agent_memory=False):
|
244 |
agent_responses_for_history.append(msg_dict)
|
245 |
+
yield updated_chat_history + agent_responses_for_history, gr.update(visible=False), gr.update(value=None, visible=False)
|
|
|
246 |
|
|
|
247 |
file_found = self._check_for_created_file()
|
248 |
|
249 |
+
final_chat_display = updated_chat_history + agent_responses_for_history
|
250 |
+
print(f"DEBUG Gradio: Final chat history for display: {len(final_chat_display)} messages.")
|
|
|
251 |
yield final_chat_display, gr.update(visible=file_found), gr.update(value=None, visible=False)
|
252 |
|
|
|
253 |
def upload_file(self, file, file_uploads_log_state):
|
254 |
+
if file is None:
|
255 |
return gr.update(value="No file uploaded.", visible=True), file_uploads_log_state
|
256 |
|
|
|
257 |
if not self.file_upload_folder or not os.path.exists(self.file_upload_folder):
|
258 |
+
os.makedirs(self.file_upload_folder, exist_ok=True)
|
259 |
|
260 |
allowed_file_types = [
|
261 |
"application/pdf",
|
262 |
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
|
263 |
+
"text/plain", "image/jpeg", "image/png",
|
|
|
264 |
]
|
265 |
|
266 |
+
original_name = file.orig_name if hasattr(file, 'orig_name') and file.orig_name else os.path.basename(file.name)
|
|
|
267 |
|
|
|
268 |
mime_type, _ = mimetypes.guess_type(file.name)
|
269 |
+
if mime_type is None:
|
270 |
mime_type, _ = mimetypes.guess_type(original_name)
|
271 |
|
272 |
if mime_type not in allowed_file_types:
|
|
|
275 |
sanitized_name = re.sub(r"[^\w\-.]", "_", original_name)
|
276 |
base_name, current_ext = os.path.splitext(sanitized_name)
|
277 |
|
278 |
+
# Updated mimetypes to extension mapping
|
279 |
+
common_mime_to_ext = {
|
280 |
"application/pdf": ".pdf",
|
281 |
"application/vnd.openxmlformats-officedocument.wordprocessingml.document": ".docx",
|
282 |
"text/plain": ".txt", "image/jpeg": ".jpg", "image/png": ".png"
|
283 |
+
}
|
284 |
+
expected_ext = common_mime_to_ext.get(mime_type)
|
285 |
|
286 |
if expected_ext and current_ext.lower() != expected_ext.lower():
|
287 |
sanitized_name = base_name + expected_ext
|
|
|
289 |
destination_path = os.path.join(self.file_upload_folder, sanitized_name)
|
290 |
|
291 |
try:
|
292 |
+
shutil.copy(file.name, destination_path)
|
293 |
print(f"DEBUG Gradio: File '{original_name}' copied to '{destination_path}'")
|
294 |
updated_log = file_uploads_log_state + [destination_path]
|
295 |
+
return gr.update(value=f"Uploaded: {original_name}", visible=True), updated_log
|
296 |
except Exception as e:
|
297 |
print(f"DEBUG Gradio: Error copying uploaded file: {e}")
|
298 |
return gr.update(value=f"Error uploading {original_name}: {e}", visible=True), file_uploads_log_state
|
299 |
|
|
|
300 |
def log_user_message(self, text_input_value: str, current_file_uploads: list):
|
301 |
full_prompt = text_input_value
|
302 |
if current_file_uploads:
|
303 |
files_str = ", ".join([os.path.basename(f) for f in current_file_uploads])
|
304 |
full_prompt += f"\n\n[Uploaded files for context: {files_str}]"
|
305 |
+
print(f"DEBUG Gradio: Prepared prompt for agent: {full_prompt[:300]}...") # Log snippet
|
306 |
+
return full_prompt, ""
|
307 |
|
308 |
def prepare_and_show_download_file(self):
|
309 |
if self._latest_file_path_for_download and os.path.exists(self._latest_file_path_for_download):
|
|
|
313 |
visible=True)
|
314 |
else:
|
315 |
print("DEBUG Gradio UI: No valid file path to prepare for download component.")
|
316 |
+
# gr.Warning("No file available for download or path is invalid.") # Causes JS error if used as return
|
317 |
+
return gr.File.update(visible=False, value=None) # Ensure value is None if not visible
|
318 |
|
319 |
def launch(self, **kwargs):
|
320 |
with gr.Blocks(fill_height=True, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue)) as demo:
|
321 |
file_uploads_log_state = gr.State([])
|
322 |
prepared_prompt_for_agent = gr.State("")
|
323 |
|
324 |
+
gr.Markdown("## Smol Talk with your Agent") # Changed title slightly
|
325 |
|
326 |
+
with gr.Row(equal_height=False): # Allow columns to size independently
|
327 |
with gr.Column(scale=3):
|
328 |
chatbot_display = gr.Chatbot(
|
329 |
label="Agent Interaction",
|
330 |
type="messages",
|
331 |
avatar_images=(None, "https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-round.png"),
|
332 |
+
height=700, # Increased height
|
333 |
show_copy_button=True,
|
334 |
+
bubble_full_width=False,
|
335 |
+
show_label=False # Hide the "Agent Interaction" label above chatbot
|
336 |
)
|
337 |
text_message_input = gr.Textbox(
|
338 |
lines=1,
|
339 |
label="Your Message to the Agent",
|
340 |
+
placeholder="Type your message and press Enter, or Shift+Enter for new line...",
|
341 |
+
show_label=False # Hide label for text input
|
342 |
)
|
343 |
|
344 |
with gr.Column(scale=1):
|
345 |
if self.file_upload_folder is not None:
|
346 |
+
with gr.Accordion("File Upload", open=False): # Collapsible section
|
347 |
+
file_uploader = gr.File(label="Upload a supporting file (PDF, DOCX, TXT, JPG, PNG)")
|
348 |
+
upload_status_text = gr.Textbox(label="Upload Status", interactive=False, lines=1) # single line
|
349 |
+
file_uploader.upload( # Changed from .change to .upload for gr.File
|
350 |
+
self.upload_file,
|
351 |
+
[file_uploader, file_uploads_log_state],
|
352 |
+
[upload_status_text, file_uploads_log_state],
|
353 |
+
)
|
354 |
|
355 |
+
with gr.Accordion("Generated File", open=True): # Collapsible, open by default
|
356 |
+
download_action_button = gr.Button("Download Generated File", visible=False)
|
357 |
+
file_download_display_component = gr.File(label="Downloadable Document", visible=False, interactive=False)
|
358 |
|
|
|
359 |
text_message_input.submit(
|
360 |
+
self.log_user_message,
|
361 |
[text_message_input, file_uploads_log_state],
|
362 |
[prepared_prompt_for_agent, text_message_input]
|
363 |
).then(
|
364 |
+
self.interact_with_agent,
|
365 |
+
[prepared_prompt_for_agent, chatbot_display], # chatbot_display is input here
|
366 |
+
[chatbot_display, download_action_button, file_download_display_component] # chatbot_display is output here
|
367 |
)
|
368 |
|
369 |
download_action_button.click(
|
|
|
371 |
[],
|
372 |
[file_download_display_component]
|
373 |
)
|
374 |
+
# Default share=False, can be overridden by kwargs
|
375 |
demo.launch(debug=True, share=kwargs.get("share", False), **kwargs)
|
376 |
|
377 |
__all__ = ["stream_to_gradio", "GradioUI"]
|