mcp-sentiment / app.py
mgbam's picture
Update app.py
1155ca4 verified
raw
history blame
9.34 kB
import gradio as gr
import numpy as np
import sqlite3
import json
import time
from PIL import Image, ImageDraw
# ------ Mock MCP Server Implementation ------
class MockMCPServer:
def __init__(self):
self.tools = {}
def register_tool(self, name, func, description):
self.tools[name] = {
"function": func,
"description": description
}
def call_tool(self, tool_name, params):
if tool_name in self.tools:
return self.tools[tool_name]["function"](**params)
return {"error": f"Tool {tool_name} not found"}
# ------ Create Mock MCP Server ------
mcp_server = MockMCPServer()
# ------ Tool Implementations ------
def get_recipe_by_ingredients(ingredients):
"""Find recipes based on available ingredients"""
# In a real implementation, this would call an API
print(f"Searching recipes with ingredients: {ingredients}")
return {
"recipes": [
{"name": "Vegetable Stir Fry", "time": 20, "difficulty": "Easy"},
{"name": "Pasta Primavera", "time": 30, "difficulty": "Medium"}
]
}
def get_recipe_image(recipe_name):
"""Generate an image of the finished recipe"""
print(f"Generating image for: {recipe_name}")
# Create a placeholder image with the recipe name
img = Image.new('RGB', (300, 200), color=(73, 109, 137))
d = ImageDraw.Draw(img)
d.text((10,10), f"Image of: {recipe_name}", fill=(255,255,0))
return img
def convert_measurements(amount, from_unit, to_unit):
"""Convert cooking measurements between units"""
print(f"Converting {amount} {from_unit} to {to_unit}")
conversions = {
("tbsp", "tsp"): lambda x: x * 3,
("cups", "ml"): lambda x: x * 240,
("oz", "g"): lambda x: x * 28.35
}
conversion_key = (from_unit.lower(), to_unit.lower())
if conversion_key in conversions:
result = conversions[conversion_key](amount)
return {"result": round(result, 2), "unit": to_unit}
return {"error": "Conversion not supported"}
# ------ Recipe Database ------
def init_recipe_db():
conn = sqlite3.connect(':memory:')
c = conn.cursor()
c.execute('''CREATE TABLE recipes
(id INTEGER PRIMARY KEY, name TEXT, ingredients TEXT, instructions TEXT, prep_time INT)''')
recipes = [
("Classic Pancakes", json.dumps(["flour", "eggs", "milk", "baking powder"]),
"1. Mix dry ingredients\n2. Add wet ingredients\n3. Cook on griddle", 15),
("Tomato Soup", json.dumps(["tomatoes", "onion", "garlic", "vegetable stock"]),
"1. Sauté onions\n2. Add tomatoes\n3. Simmer and blend", 30),
("Chocolate Cake", json.dumps(["flour", "sugar", "cocoa", "eggs", "milk"]),
"1. Mix dry ingredients\n2. Add wet ingredients\n3. Bake at 350°F", 45)
]
c.executemany("INSERT INTO recipes (name, ingredients, instructions, prep_time) VALUES (?,?,?,?)", recipes)
conn.commit()
return conn
# ------ Voice Processing Functions ------
def text_to_speech(text):
"""Mock TTS function - in real use, replace with actual TTS"""
print(f"[TTS]: {text}")
# Return dummy audio data (silence)
duration = 2 # seconds
sample_rate = 44100
samples = np.zeros(int(duration * sample_rate), dtype=np.float32)
return (sample_rate, samples)
def speech_to_text(audio):
"""Mock STT function - in real use, replace with actual STT"""
# For now, we return a fixed string. In reality, we would process the audio
sample_rate, audio_data = audio
print(f"Received audio with sample rate {sample_rate} and shape {audio_data.shape}")
# Return a fixed response for demo
return "What can I make with eggs and flour?"
# ------ Agent Logic ------
def process_query(query, db_conn):
"""Process user query using the available tools"""
print(f"Processing query: {query}")
# Simple intent recognition
if "recipe" in query.lower() or "make" in query.lower() or "cook" in query.lower():
# Extract ingredients - very simple, just use some keywords
ingredients = []
for word in ["eggs", "flour", "milk", "tomatoes", "onion", "garlic"]:
if word in query.lower():
ingredients.append(word)
if not ingredients:
ingredients = ["eggs", "flour"] # default
return {
"type": "recipes",
"data": mcp_server.call_tool("get_recipe_by_ingredients", {"ingredients": ingredients})
}
elif "image" in query.lower() or "show" in query.lower() or "look" in query.lower():
# Extract recipe name
recipe_name = "Classic Pancakes" # default
for recipe in ["pancakes", "stir fry", "tomato soup", "chocolate cake"]:
if recipe in query.lower():
recipe_name = recipe
break
return {
"type": "image",
"data": mcp_server.call_tool("get_recipe_image", {"recipe_name": recipe_name})
}
elif "convert" in query.lower():
# Extract amount and units - very simple
# Assume pattern: convert <number> <unit> to <unit>
words = query.split()
try:
amount = float(words[words.index("convert")+1])
from_unit = words[words.index("convert")+2]
to_unit = words[words.index("to")+1]
except:
amount = 2
from_unit = "cups"
to_unit = "ml"
return {
"type": "conversion",
"data": mcp_server.call_tool("convert_measurements", {"amount": amount, "from_unit": from_unit, "to_unit": to_unit})
}
else:
# Fallback to database search
c = db_conn.cursor()
c.execute("SELECT * FROM recipes WHERE name LIKE ?", (f"%{query}%",))
recipes = c.fetchall()
return {
"type": "db_recipes",
"data": recipes
}
# ------ Register Tools with MCP Server ------
mcp_server.register_tool(
"get_recipe_by_ingredients",
get_recipe_by_ingredients,
"Find recipes based on available ingredients"
)
mcp_server.register_tool(
"get_recipe_image",
get_recipe_image,
"Generate an image of the finished recipe"
)
mcp_server.register_tool(
"convert_measurements",
convert_measurements,
"Convert cooking measurements between units"
)
# ------ Initialize System ------
db_conn = init_recipe_db()
# ------ Gradio Interface ------
def process_voice_command(audio):
"""Process voice command through the agent system"""
# Convert audio to text
query = speech_to_text(audio)
# Process query using agent logic
result = process_query(query, db_conn)
# Generate response text and image
response_text = ""
image = None
if result["type"] == "recipes":
recipes = result["data"]["recipes"]
response_text = f"Found {len(recipes)} recipes:\n"
for recipe in recipes:
response_text += f"- {recipe['name']} ({recipe['time']} mins, {recipe['difficulty']})\n"
elif result["type"] == "image":
image = result["data"] # This is a PIL image
response_text = "Here is an image of the recipe!"
elif result["type"] == "conversion":
conv = result["data"]
if "error" in conv:
response_text = f"Error: {conv['error']}"
else:
response_text = f"{conv['result']} {conv['unit']}"
elif result["type"] == "db_recipes":
recipes = result["data"]
if recipes:
response_text = f"Found {len(recipes)} recipes in database:\n"
for recipe in recipes:
response_text += f"- {recipe[1]} ({recipe[4]} mins)\n"
else:
response_text = "No recipes found."
else:
response_text = "I'm not sure how to help with that."
# Convert response to audio
sr, audio_data = text_to_speech(response_text)
# Return results: audio output, text, and image
return (sr, audio_data), response_text, image
# ------ Hugging Face Space UI ------
with gr.Blocks(title="MCP Culinary Voice Assistant") as demo:
gr.Markdown("# 🧑‍🍳 MCP-Powered Culinary Voice Assistant")
gr.Markdown("Speak to your cooking assistant about recipes, conversions, and more!")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(source="microphone", type="numpy", label="Speak to Chef Assistant")
submit_btn = gr.Button("Process Command", variant="primary")
with gr.Column():
audio_output = gr.Audio(label="Assistant Response", interactive=False)
with gr.Row():
text_output = gr.Textbox(label="Transcription", interactive=False)
image_output = gr.Image(label="Recipe Image", interactive=False)
submit_btn.click(
fn=process_voice_command,
inputs=[audio_input],
outputs=[audio_output, text_output, image_output]
)
gr.Examples(
examples=[
["What can I make with eggs and flour?"],
["Show me how tomato soup looks"],
["Convert 2 cups to milliliters"],
["Find chocolate cake recipes"]
],
inputs=[text_output],
label="Example Queries"
)
if __name__ == "__main__":
demo.launch()