Spaces:
Running
Running
import os | |
import re | |
import json | |
from datetime import datetime | |
from typing import List, Dict, Any, Optional, Literal | |
from fastapi import FastAPI, Request, BackgroundTasks | |
from fastapi.middleware.cors import CORSMiddleware | |
import gradio as gr | |
import uvicorn | |
from pydantic import BaseModel | |
from huggingface_hub.inference._mcp.agent import Agent | |
from dotenv import load_dotenv | |
load_dotenv() | |
# Configuration | |
WEBHOOK_SECRET = os.getenv("WEBHOOK_SECRET", "your-webhook-secret") | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
HF_MODEL = os.getenv("HF_MODEL", "microsoft/DialoGPT-medium") | |
# Use a valid provider literal from the documentation | |
DEFAULT_PROVIDER: Literal["hf-inference"] = "hf-inference" | |
HF_PROVIDER = os.getenv("HF_PROVIDER", DEFAULT_PROVIDER) | |
# Simple storage for processed tag operations | |
tag_operations_store: List[Dict[str, Any]] = [] | |
# Agent instance | |
agent_instance: Optional[Agent] = None | |
# Common ML tags that we recognize for auto-tagging | |
RECOGNIZED_TAGS = { | |
"pytorch", | |
"tensorflow", | |
"jax", | |
"transformers", | |
"diffusers", | |
"text-generation", | |
"text-classification", | |
"question-answering", | |
"text-to-image", | |
"image-classification", | |
"object-detection", | |
" ", | |
"fill-mask", | |
"token-classification", | |
"translation", | |
"summarization", | |
"feature-extraction", | |
"sentence-similarity", | |
"zero-shot-classification", | |
"image-to-text", | |
"automatic-speech-recognition", | |
"audio-classification", | |
"voice-activity-detection", | |
"depth-estimation", | |
"image-segmentation", | |
"video-classification", | |
"reinforcement-learning", | |
"tabular-classification", | |
"tabular-regression", | |
"time-series-forecasting", | |
"graph-ml", | |
"robotics", | |
"computer-vision", | |
"nlp", | |
"cv", | |
"multimodal", | |
} | |
class WebhookEvent(BaseModel): | |
event: Dict[str, str] | |
comment: Dict[str, Any] | |
discussion: Dict[str, Any] | |
repo: Dict[str, str] | |
app = FastAPI(title="HF Tagging Bot") | |
app.add_middleware(CORSMiddleware, allow_origins=["*"]) | |
async def get_agent(): | |
"""Get or create Agent instance""" | |
print("π€ get_agent() called...") | |
global agent_instance | |
if agent_instance is None and HF_TOKEN: | |
print("π§ Creating new Agent instance...") | |
print(f"π HF_TOKEN present: {bool(HF_TOKEN)}") | |
print(f"π€ Model: {HF_MODEL}") | |
print(f"π Provider: {DEFAULT_PROVIDER}") | |
try: | |
agent_instance = Agent( | |
model=HF_MODEL, | |
provider=DEFAULT_PROVIDER, | |
api_key=HF_TOKEN, | |
servers=[ | |
{ | |
"type": "stdio", | |
"config": { | |
"command": "python", | |
"args": ["mcp_server.py"], | |
"cwd": ".", # Ensure correct working directory | |
"env": {"HF_TOKEN": HF_TOKEN} if HF_TOKEN else {}, | |
}, | |
} | |
], | |
) | |
print("β Agent instance created successfully") | |
print("π§ Loading tools...") | |
await agent_instance.load_tools() | |
print("β Tools loaded successfully") | |
except Exception as e: | |
print(f"β Error creating/loading agent: {str(e)}") | |
agent_instance = None | |
elif agent_instance is None: | |
print("β No HF_TOKEN available, cannot create agent") | |
else: | |
print("β Using existing agent instance") | |
return agent_instance | |
def extract_tags_from_text(text: str) -> List[str]: | |
"""Extract potential tags from discussion text""" | |
text_lower = text.lower() | |
# Look for explicit tag mentions like "tag: pytorch" or "#pytorch" | |
explicit_tags = [] | |
# Pattern 1: "tag: something" or "tags: something" | |
tag_pattern = r"tags?:\s*([a-zA-Z0-9-_,\s]+)" | |
matches = re.findall(tag_pattern, text_lower) | |
for match in matches: | |
# Split by comma and clean up | |
tags = [tag.strip() for tag in match.split(",")] | |
explicit_tags.extend(tags) | |
# Pattern 2: "#hashtag" style | |
hashtag_pattern = r"#([a-zA-Z0-9-_]+)" | |
hashtag_matches = re.findall(hashtag_pattern, text_lower) | |
explicit_tags.extend(hashtag_matches) | |
# Pattern 3: Look for recognized tags mentioned in natural text | |
mentioned_tags = [] | |
for tag in RECOGNIZED_TAGS: | |
if tag in text_lower: | |
mentioned_tags.append(tag) | |
# Combine and deduplicate | |
all_tags = list(set(explicit_tags + mentioned_tags)) | |
# Filter to only include recognized tags or explicitly mentioned ones | |
valid_tags = [] | |
for tag in all_tags: | |
if tag in RECOGNIZED_TAGS or tag in explicit_tags: | |
valid_tags.append(tag) | |
return valid_tags | |
async def process_webhook_comment(webhook_data: Dict[str, Any]): | |
"""Process webhook to detect and add tags""" | |
print("π·οΈ Starting process_webhook_comment...") | |
try: | |
comment_content = webhook_data["comment"]["content"] | |
discussion_title = webhook_data["discussion"]["title"] | |
repo_name = webhook_data["repo"]["name"] | |
discussion_num = webhook_data["discussion"]["num"] | |
# Author is an object with "id" field | |
comment_author = webhook_data["comment"]["author"].get("id", "unknown") | |
print(f"π Comment content: {comment_content}") | |
print(f"π° Discussion title: {discussion_title}") | |
print(f"π¦ Repository: {repo_name}") | |
# Extract potential tags from the comment and discussion title | |
comment_tags = extract_tags_from_text(comment_content) | |
title_tags = extract_tags_from_text(discussion_title) | |
all_tags = list(set(comment_tags + title_tags)) | |
print(f"π Comment tags found: {comment_tags}") | |
print(f"π Title tags found: {title_tags}") | |
print(f"π·οΈ All unique tags: {all_tags}") | |
result_messages = [] | |
if not all_tags: | |
msg = "No recognizable tags found in the discussion." | |
print(f"β {msg}") | |
result_messages.append(msg) | |
else: | |
print("π€ Getting agent instance...") | |
agent = await get_agent() | |
if not agent: | |
msg = "Error: Agent not configured (missing HF_TOKEN)" | |
print(f"β {msg}") | |
result_messages.append(msg) | |
else: | |
print("β Agent instance obtained successfully") | |
# Process all tags in a single conversation with the agent | |
try: | |
# Create a comprehensive prompt for the agent | |
user_prompt = f""" | |
I need to add the following tags to the repository '{repo_name}': {", ".join(all_tags)} | |
For each tag, please: | |
1. Check if the tag already exists on the repository using get_current_tags | |
2. If the tag doesn't exist, add it using add_new_tag | |
3. Provide a summary of what was done for each tag | |
Please process all {len(all_tags)} tags: {", ".join(all_tags)} | |
""" | |
print("π¬ Sending comprehensive prompt to agent...") | |
print(f"π Prompt: {user_prompt}") | |
# Let the agent handle the entire conversation | |
conversation_result = [] | |
try: | |
async for item in agent.run(user_prompt): | |
# The agent yields different types of items | |
item_str = str(item) | |
conversation_result.append(item_str) | |
# Log important events | |
if ( | |
"tool_call" in item_str.lower() | |
or "function" in item_str.lower() | |
): | |
print(f"π§ Agent using tools: {item_str[:200]}...") | |
elif "content" in item_str and len(item_str) < 500: | |
print(f"π Agent response: {item_str}") | |
# Extract the final response from the conversation | |
full_response = " ".join(conversation_result) | |
print(f"π Agent conversation completed successfully") | |
# Try to extract meaningful results for each tag | |
for tag in all_tags: | |
tag_mentioned = tag.lower() in full_response.lower() | |
if ( | |
"already exists" in full_response.lower() | |
and tag_mentioned | |
): | |
msg = f"Tag '{tag}': Already exists" | |
elif ( | |
"pr" in full_response.lower() | |
or "pull request" in full_response.lower() | |
): | |
if tag_mentioned: | |
msg = f"Tag '{tag}': PR created successfully" | |
else: | |
msg = ( | |
f"Tag '{tag}': Processed " | |
"(PR may have been created)" | |
) | |
elif "success" in full_response.lower() and tag_mentioned: | |
msg = f"Tag '{tag}': Successfully processed" | |
elif "error" in full_response.lower() and tag_mentioned: | |
msg = f"Tag '{tag}': Error during processing" | |
else: | |
msg = f"Tag '{tag}': Processed by agent" | |
print(f"β Result for tag '{tag}': {msg}") | |
result_messages.append(msg) | |
except Exception as agent_error: | |
print(f"β οΈ Agent streaming failed: {str(agent_error)}") | |
print("π Falling back to direct MCP tool calls...") | |
# Import the MCP server functions directly as fallback | |
try: | |
import sys | |
import importlib.util | |
# Load the MCP server module | |
spec = importlib.util.spec_from_file_location( | |
"mcp_server", "./mcp_server.py" | |
) | |
mcp_module = importlib.util.module_from_spec(spec) | |
spec.loader.exec_module(mcp_module) | |
# Use the MCP tools directly for each tag | |
for tag in all_tags: | |
try: | |
print( | |
f"π§ Directly calling get_current_tags for '{tag}'" | |
) | |
current_tags_result = mcp_module.get_current_tags( | |
repo_name | |
) | |
print( | |
f"π Current tags result: {current_tags_result}" | |
) | |
# Parse the JSON result | |
import json | |
tags_data = json.loads(current_tags_result) | |
if tags_data.get("status") == "success": | |
current_tags = tags_data.get("current_tags", []) | |
if tag in current_tags: | |
msg = f"Tag '{tag}': Already exists" | |
print(f"β {msg}") | |
else: | |
print( | |
f"π§ Directly calling add_new_tag for '{tag}'" | |
) | |
add_result = mcp_module.add_new_tag( | |
repo_name, tag | |
) | |
print(f"π Add tag result: {add_result}") | |
add_data = json.loads(add_result) | |
if add_data.get("status") == "success": | |
pr_url = add_data.get("pr_url", "") | |
msg = f"Tag '{tag}': PR created - {pr_url}" | |
elif ( | |
add_data.get("status") | |
== "already_exists" | |
): | |
msg = f"Tag '{tag}': Already exists" | |
else: | |
msg = f"Tag '{tag}': {add_data.get('message', 'Processed')}" | |
print(f"β {msg}") | |
else: | |
error_msg = tags_data.get( | |
"error", "Unknown error" | |
) | |
msg = f"Tag '{tag}': Error - {error_msg}" | |
print(f"β {msg}") | |
result_messages.append(msg) | |
except Exception as direct_error: | |
error_msg = f"Tag '{tag}': Direct call error - {str(direct_error)}" | |
print(f"β {error_msg}") | |
result_messages.append(error_msg) | |
except Exception as fallback_error: | |
error_msg = ( | |
f"Fallback approach failed: {str(fallback_error)}" | |
) | |
print(f"β {error_msg}") | |
result_messages.append(error_msg) | |
except Exception as e: | |
error_msg = f"Error during agent processing: {str(e)}" | |
print(f"β {error_msg}") | |
result_messages.append(error_msg) | |
# Store the interaction | |
base_url = "https://huggingface.co" | |
discussion_url = f"{base_url}/{repo_name}/discussions/{discussion_num}" | |
interaction = { | |
"timestamp": datetime.now().isoformat(), | |
"repo": repo_name, | |
"discussion_title": discussion_title, | |
"discussion_num": discussion_num, | |
"discussion_url": discussion_url, | |
"original_comment": comment_content, | |
"comment_author": comment_author, | |
"detected_tags": all_tags, | |
"results": result_messages, | |
} | |
tag_operations_store.append(interaction) | |
final_result = " | ".join(result_messages) | |
print(f"πΎ Stored interaction and returning result: {final_result}") | |
return final_result | |
except Exception as e: | |
error_msg = f"β Fatal error in process_webhook_comment: {str(e)}" | |
print(error_msg) | |
return error_msg | |
async def webhook_handler(request: Request, background_tasks: BackgroundTasks): | |
"""Handle HF Hub webhooks""" | |
webhook_secret = request.headers.get("X-Webhook-Secret") | |
if webhook_secret != WEBHOOK_SECRET: | |
print("β Invalid webhook secret") | |
return {"error": "Invalid webhook secret"} | |
payload = await request.json() | |
print(f"π₯ Received webhook payload: {json.dumps(payload, indent=2)}") | |
event = payload.get("event", {}) | |
scope = event.get("scope") | |
action = event.get("action") | |
print(f"π Event details - scope: {scope}, action: {action}") | |
# Check if this is a discussion comment creation | |
scope_check = scope == "discussion" | |
action_check = action == "create" | |
not_pr = not payload["discussion"]["isPullRequest"] | |
scope_check = scope_check and not_pr | |
print(f"β not_pr: {not_pr}") | |
print(f"β scope_check: {scope_check}") | |
print(f"β action_check: {action_check}") | |
if scope_check and action_check: | |
# Verify we have the required fields | |
required_fields = ["comment", "discussion", "repo"] | |
missing_fields = [field for field in required_fields if field not in payload] | |
if missing_fields: | |
error_msg = f"Missing required fields: {missing_fields}" | |
print(f"β {error_msg}") | |
return {"error": error_msg} | |
print(f"π Processing webhook for repo: {payload['repo']['name']}") | |
background_tasks.add_task(process_webhook_comment, payload) | |
return {"status": "processing"} | |
print(f"βοΈ Ignoring webhook - scope: {scope}, action: {action}") | |
return {"status": "ignored"} | |
async def simulate_webhook( | |
repo_name: str, discussion_title: str, comment_content: str | |
) -> str: | |
"""Simulate webhook for testing""" | |
if not all([repo_name, discussion_title, comment_content]): | |
return "Please fill in all fields." | |
mock_payload = { | |
"event": {"action": "create", "scope": "discussion"}, | |
"comment": { | |
"content": comment_content, | |
"author": {"id": "test-user-id"}, | |
"id": "mock-comment-id", | |
"hidden": False, | |
}, | |
"discussion": { | |
"title": discussion_title, | |
"num": len(tag_operations_store) + 1, | |
"id": "mock-discussion-id", | |
"status": "open", | |
"isPullRequest": False, | |
}, | |
"repo": { | |
"name": repo_name, | |
"type": "model", | |
"private": False, | |
}, | |
} | |
response = await process_webhook_comment(mock_payload) | |
return f"β Processed! Results: {response}" | |
def create_gradio_app(): | |
"""Create Gradio interface""" | |
with gr.Blocks(title="HF Tagging Bot", theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# π·οΈ HF Tagging Bot Dashboard") | |
gr.Markdown("*Automatically adds tags to models when mentioned in discussions*") | |
gr.Markdown(""" | |
## How it works: | |
- Monitors HuggingFace Hub discussions | |
- Detects tag mentions in comments (e.g., "tag: pytorch", | |
"#transformers") | |
- Automatically adds recognized tags to the model repository | |
- Supports common ML tags like: pytorch, tensorflow, | |
text-generation, etc. | |
""") | |
with gr.Column(): | |
sim_repo = gr.Textbox( | |
label="Repository", | |
value="burtenshaw/play-mcp-repo-bot", | |
placeholder="username/model-name", | |
) | |
sim_title = gr.Textbox( | |
label="Discussion Title", | |
value="Add pytorch tag", | |
placeholder="Discussion title", | |
) | |
sim_comment = gr.Textbox( | |
label="Comment", | |
lines=3, | |
value="This model should have tags: pytorch, text-generation", | |
placeholder="Comment mentioning tags...", | |
) | |
sim_btn = gr.Button("π·οΈ Test Tag Detection") | |
with gr.Column(): | |
sim_result = gr.Textbox(label="Result", lines=8) | |
sim_btn.click( | |
fn=simulate_webhook, | |
inputs=[sim_repo, sim_title, sim_comment], | |
outputs=sim_result, | |
) | |
gr.Markdown(f""" | |
## Recognized Tags: | |
{", ".join(sorted(RECOGNIZED_TAGS))} | |
""") | |
return demo | |
# Mount Gradio app | |
gradio_app = create_gradio_app() | |
app = gr.mount_gradio_app(app, gradio_app, path="/gradio") | |
if __name__ == "__main__": | |
print("π Starting HF Tagging Bot...") | |
print("π Dashboard: http://localhost:7860/gradio") | |
print("π Webhook: http://localhost:7860/webhook") | |
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True) | |