Spaces:
Running
Running
File size: 20,300 Bytes
cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba 49da546 571cc8c 49da546 cf9a1ba 49da546 cf9a1ba b750fb8 cf9a1ba b750fb8 cf9a1ba 49da546 cf9a1ba 49da546 b750fb8 49da546 b750fb8 49da546 b750fb8 49da546 b750fb8 49da546 b750fb8 49da546 b750fb8 49da546 b750fb8 49da546 b750fb8 49da546 b750fb8 49da546 b750fb8 49da546 b750fb8 49da546 b750fb8 49da546 b750fb8 49da546 b750fb8 49da546 b750fb8 cf9a1ba d0a5416 cf9a1ba d0a5416 cf9a1ba d0a5416 ec512db 7162d87 d0a5416 cf9a1ba d0a5416 cf9a1ba d0a5416 cf9a1ba d0a5416 cf9a1ba d0a5416 cf9a1ba 49da546 d0a5416 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba d0a5416 cf9a1ba 49da546 cf9a1ba 49da546 cf9a1ba 14270af cf9a1ba 49da546 c902a3f ec512db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
import os
import re
import json
from datetime import datetime
from typing import List, Dict, Any, Optional, Literal
from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
import gradio as gr
import uvicorn
from pydantic import BaseModel
from huggingface_hub.inference._mcp.agent import Agent
from dotenv import load_dotenv
load_dotenv()
# Configuration
WEBHOOK_SECRET = os.getenv("WEBHOOK_SECRET", "your-webhook-secret")
HF_TOKEN = os.getenv("HF_TOKEN")
HF_MODEL = os.getenv("HF_MODEL", "microsoft/DialoGPT-medium")
# Use a valid provider literal from the documentation
DEFAULT_PROVIDER: Literal["hf-inference"] = "hf-inference"
HF_PROVIDER = os.getenv("HF_PROVIDER", DEFAULT_PROVIDER)
# Simple storage for processed tag operations
tag_operations_store: List[Dict[str, Any]] = []
# Agent instance
agent_instance: Optional[Agent] = None
# Common ML tags that we recognize for auto-tagging
RECOGNIZED_TAGS = {
"pytorch",
"tensorflow",
"jax",
"transformers",
"diffusers",
"text-generation",
"text-classification",
"question-answering",
"text-to-image",
"image-classification",
"object-detection",
" ",
"fill-mask",
"token-classification",
"translation",
"summarization",
"feature-extraction",
"sentence-similarity",
"zero-shot-classification",
"image-to-text",
"automatic-speech-recognition",
"audio-classification",
"voice-activity-detection",
"depth-estimation",
"image-segmentation",
"video-classification",
"reinforcement-learning",
"tabular-classification",
"tabular-regression",
"time-series-forecasting",
"graph-ml",
"robotics",
"computer-vision",
"nlp",
"cv",
"multimodal",
}
class WebhookEvent(BaseModel):
event: Dict[str, str]
comment: Dict[str, Any]
discussion: Dict[str, Any]
repo: Dict[str, str]
app = FastAPI(title="HF Tagging Bot")
app.add_middleware(CORSMiddleware, allow_origins=["*"])
async def get_agent():
"""Get or create Agent instance"""
print("π€ get_agent() called...")
global agent_instance
if agent_instance is None and HF_TOKEN:
print("π§ Creating new Agent instance...")
print(f"π HF_TOKEN present: {bool(HF_TOKEN)}")
print(f"π€ Model: {HF_MODEL}")
print(f"π Provider: {DEFAULT_PROVIDER}")
try:
agent_instance = Agent(
model=HF_MODEL,
provider=DEFAULT_PROVIDER,
api_key=HF_TOKEN,
servers=[
{
"type": "stdio",
"config": {
"command": "python",
"args": ["mcp_server.py"],
"cwd": ".", # Ensure correct working directory
"env": {"HF_TOKEN": HF_TOKEN} if HF_TOKEN else {},
},
}
],
)
print("β
Agent instance created successfully")
print("π§ Loading tools...")
await agent_instance.load_tools()
print("β
Tools loaded successfully")
except Exception as e:
print(f"β Error creating/loading agent: {str(e)}")
agent_instance = None
elif agent_instance is None:
print("β No HF_TOKEN available, cannot create agent")
else:
print("β
Using existing agent instance")
return agent_instance
def extract_tags_from_text(text: str) -> List[str]:
"""Extract potential tags from discussion text"""
text_lower = text.lower()
# Look for explicit tag mentions like "tag: pytorch" or "#pytorch"
explicit_tags = []
# Pattern 1: "tag: something" or "tags: something"
tag_pattern = r"tags?:\s*([a-zA-Z0-9-_,\s]+)"
matches = re.findall(tag_pattern, text_lower)
for match in matches:
# Split by comma and clean up
tags = [tag.strip() for tag in match.split(",")]
explicit_tags.extend(tags)
# Pattern 2: "#hashtag" style
hashtag_pattern = r"#([a-zA-Z0-9-_]+)"
hashtag_matches = re.findall(hashtag_pattern, text_lower)
explicit_tags.extend(hashtag_matches)
# Pattern 3: Look for recognized tags mentioned in natural text
mentioned_tags = []
for tag in RECOGNIZED_TAGS:
if tag in text_lower:
mentioned_tags.append(tag)
# Combine and deduplicate
all_tags = list(set(explicit_tags + mentioned_tags))
# Filter to only include recognized tags or explicitly mentioned ones
valid_tags = []
for tag in all_tags:
if tag in RECOGNIZED_TAGS or tag in explicit_tags:
valid_tags.append(tag)
return valid_tags
async def process_webhook_comment(webhook_data: Dict[str, Any]):
"""Process webhook to detect and add tags"""
print("π·οΈ Starting process_webhook_comment...")
try:
comment_content = webhook_data["comment"]["content"]
discussion_title = webhook_data["discussion"]["title"]
repo_name = webhook_data["repo"]["name"]
discussion_num = webhook_data["discussion"]["num"]
# Author is an object with "id" field
comment_author = webhook_data["comment"]["author"].get("id", "unknown")
print(f"π Comment content: {comment_content}")
print(f"π° Discussion title: {discussion_title}")
print(f"π¦ Repository: {repo_name}")
# Extract potential tags from the comment and discussion title
comment_tags = extract_tags_from_text(comment_content)
title_tags = extract_tags_from_text(discussion_title)
all_tags = list(set(comment_tags + title_tags))
print(f"π Comment tags found: {comment_tags}")
print(f"π Title tags found: {title_tags}")
print(f"π·οΈ All unique tags: {all_tags}")
result_messages = []
if not all_tags:
msg = "No recognizable tags found in the discussion."
print(f"β {msg}")
result_messages.append(msg)
else:
print("π€ Getting agent instance...")
agent = await get_agent()
if not agent:
msg = "Error: Agent not configured (missing HF_TOKEN)"
print(f"β {msg}")
result_messages.append(msg)
else:
print("β
Agent instance obtained successfully")
# Process all tags in a single conversation with the agent
try:
# Create a comprehensive prompt for the agent
user_prompt = f"""
I need to add the following tags to the repository '{repo_name}': {", ".join(all_tags)}
For each tag, please:
1. Check if the tag already exists on the repository using get_current_tags
2. If the tag doesn't exist, add it using add_new_tag
3. Provide a summary of what was done for each tag
Please process all {len(all_tags)} tags: {", ".join(all_tags)}
"""
print("π¬ Sending comprehensive prompt to agent...")
print(f"π Prompt: {user_prompt}")
# Let the agent handle the entire conversation
conversation_result = []
try:
async for item in agent.run(user_prompt):
# The agent yields different types of items
item_str = str(item)
conversation_result.append(item_str)
# Log important events
if (
"tool_call" in item_str.lower()
or "function" in item_str.lower()
):
print(f"π§ Agent using tools: {item_str[:200]}...")
elif "content" in item_str and len(item_str) < 500:
print(f"π Agent response: {item_str}")
# Extract the final response from the conversation
full_response = " ".join(conversation_result)
print(f"π Agent conversation completed successfully")
# Try to extract meaningful results for each tag
for tag in all_tags:
tag_mentioned = tag.lower() in full_response.lower()
if (
"already exists" in full_response.lower()
and tag_mentioned
):
msg = f"Tag '{tag}': Already exists"
elif (
"pr" in full_response.lower()
or "pull request" in full_response.lower()
):
if tag_mentioned:
msg = f"Tag '{tag}': PR created successfully"
else:
msg = (
f"Tag '{tag}': Processed "
"(PR may have been created)"
)
elif "success" in full_response.lower() and tag_mentioned:
msg = f"Tag '{tag}': Successfully processed"
elif "error" in full_response.lower() and tag_mentioned:
msg = f"Tag '{tag}': Error during processing"
else:
msg = f"Tag '{tag}': Processed by agent"
print(f"β
Result for tag '{tag}': {msg}")
result_messages.append(msg)
except Exception as agent_error:
print(f"β οΈ Agent streaming failed: {str(agent_error)}")
print("π Falling back to direct MCP tool calls...")
# Import the MCP server functions directly as fallback
try:
import sys
import importlib.util
# Load the MCP server module
spec = importlib.util.spec_from_file_location(
"mcp_server", "./mcp_server.py"
)
mcp_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(mcp_module)
# Use the MCP tools directly for each tag
for tag in all_tags:
try:
print(
f"π§ Directly calling get_current_tags for '{tag}'"
)
current_tags_result = mcp_module.get_current_tags(
repo_name
)
print(
f"π Current tags result: {current_tags_result}"
)
# Parse the JSON result
import json
tags_data = json.loads(current_tags_result)
if tags_data.get("status") == "success":
current_tags = tags_data.get("current_tags", [])
if tag in current_tags:
msg = f"Tag '{tag}': Already exists"
print(f"β
{msg}")
else:
print(
f"π§ Directly calling add_new_tag for '{tag}'"
)
add_result = mcp_module.add_new_tag(
repo_name, tag
)
print(f"π Add tag result: {add_result}")
add_data = json.loads(add_result)
if add_data.get("status") == "success":
pr_url = add_data.get("pr_url", "")
msg = f"Tag '{tag}': PR created - {pr_url}"
elif (
add_data.get("status")
== "already_exists"
):
msg = f"Tag '{tag}': Already exists"
else:
msg = f"Tag '{tag}': {add_data.get('message', 'Processed')}"
print(f"β
{msg}")
else:
error_msg = tags_data.get(
"error", "Unknown error"
)
msg = f"Tag '{tag}': Error - {error_msg}"
print(f"β {msg}")
result_messages.append(msg)
except Exception as direct_error:
error_msg = f"Tag '{tag}': Direct call error - {str(direct_error)}"
print(f"β {error_msg}")
result_messages.append(error_msg)
except Exception as fallback_error:
error_msg = (
f"Fallback approach failed: {str(fallback_error)}"
)
print(f"β {error_msg}")
result_messages.append(error_msg)
except Exception as e:
error_msg = f"Error during agent processing: {str(e)}"
print(f"β {error_msg}")
result_messages.append(error_msg)
# Store the interaction
base_url = "https://huggingface.co"
discussion_url = f"{base_url}/{repo_name}/discussions/{discussion_num}"
interaction = {
"timestamp": datetime.now().isoformat(),
"repo": repo_name,
"discussion_title": discussion_title,
"discussion_num": discussion_num,
"discussion_url": discussion_url,
"original_comment": comment_content,
"comment_author": comment_author,
"detected_tags": all_tags,
"results": result_messages,
}
tag_operations_store.append(interaction)
final_result = " | ".join(result_messages)
print(f"πΎ Stored interaction and returning result: {final_result}")
return final_result
except Exception as e:
error_msg = f"β Fatal error in process_webhook_comment: {str(e)}"
print(error_msg)
return error_msg
@app.post("/webhook")
async def webhook_handler(request: Request, background_tasks: BackgroundTasks):
"""Handle HF Hub webhooks"""
webhook_secret = request.headers.get("X-Webhook-Secret")
if webhook_secret != WEBHOOK_SECRET:
print("β Invalid webhook secret")
return {"error": "Invalid webhook secret"}
payload = await request.json()
print(f"π₯ Received webhook payload: {json.dumps(payload, indent=2)}")
event = payload.get("event", {})
scope = event.get("scope")
action = event.get("action")
print(f"π Event details - scope: {scope}, action: {action}")
# Check if this is a discussion comment creation
scope_check = scope == "discussion"
action_check = action == "create"
not_pr = not payload["discussion"]["isPullRequest"]
scope_check = scope_check and not_pr
print(f"β
not_pr: {not_pr}")
print(f"β
scope_check: {scope_check}")
print(f"β
action_check: {action_check}")
if scope_check and action_check:
# Verify we have the required fields
required_fields = ["comment", "discussion", "repo"]
missing_fields = [field for field in required_fields if field not in payload]
if missing_fields:
error_msg = f"Missing required fields: {missing_fields}"
print(f"β {error_msg}")
return {"error": error_msg}
print(f"π Processing webhook for repo: {payload['repo']['name']}")
background_tasks.add_task(process_webhook_comment, payload)
return {"status": "processing"}
print(f"βοΈ Ignoring webhook - scope: {scope}, action: {action}")
return {"status": "ignored"}
async def simulate_webhook(
repo_name: str, discussion_title: str, comment_content: str
) -> str:
"""Simulate webhook for testing"""
if not all([repo_name, discussion_title, comment_content]):
return "Please fill in all fields."
mock_payload = {
"event": {"action": "create", "scope": "discussion"},
"comment": {
"content": comment_content,
"author": {"id": "test-user-id"},
"id": "mock-comment-id",
"hidden": False,
},
"discussion": {
"title": discussion_title,
"num": len(tag_operations_store) + 1,
"id": "mock-discussion-id",
"status": "open",
"isPullRequest": False,
},
"repo": {
"name": repo_name,
"type": "model",
"private": False,
},
}
response = await process_webhook_comment(mock_payload)
return f"β
Processed! Results: {response}"
def create_gradio_app():
"""Create Gradio interface"""
with gr.Blocks(title="HF Tagging Bot", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π·οΈ HF Tagging Bot Dashboard")
gr.Markdown("*Automatically adds tags to models when mentioned in discussions*")
gr.Markdown("""
## How it works:
- Monitors HuggingFace Hub discussions
- Detects tag mentions in comments (e.g., "tag: pytorch",
"#transformers")
- Automatically adds recognized tags to the model repository
- Supports common ML tags like: pytorch, tensorflow,
text-generation, etc.
""")
with gr.Column():
sim_repo = gr.Textbox(
label="Repository",
value="burtenshaw/play-mcp-repo-bot",
placeholder="username/model-name",
)
sim_title = gr.Textbox(
label="Discussion Title",
value="Add pytorch tag",
placeholder="Discussion title",
)
sim_comment = gr.Textbox(
label="Comment",
lines=3,
value="This model should have tags: pytorch, text-generation",
placeholder="Comment mentioning tags...",
)
sim_btn = gr.Button("π·οΈ Test Tag Detection")
with gr.Column():
sim_result = gr.Textbox(label="Result", lines=8)
sim_btn.click(
fn=simulate_webhook,
inputs=[sim_repo, sim_title, sim_comment],
outputs=sim_result,
)
gr.Markdown(f"""
## Recognized Tags:
{", ".join(sorted(RECOGNIZED_TAGS))}
""")
return demo
# Mount Gradio app
gradio_app = create_gradio_app()
app = gr.mount_gradio_app(app, gradio_app, path="/gradio")
if __name__ == "__main__":
print("π Starting HF Tagging Bot...")
print("π Dashboard: http://localhost:7860/gradio")
print("π Webhook: http://localhost:7860/webhook")
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|