tag-this-repo / README.md
burtenshaw
first commit
05c2ac8
|
raw
history blame
7.37 kB
metadata
title: Mcp Discussion Bot
emoji: πŸ‘€
colorFrom: purple
colorTo: yellow
sdk: gradio
sdk_version: 5.31.0
app_file: app.py
pinned: false

πŸ€– Hugging Face Discussion Bot

A FastAPI and Gradio application that automatically responds to Hugging Face Hub discussion comments using AI-powered responses via Hugging Face Inference API with MCP integration.

✨ Features

  • Webhook Integration: Receives real-time webhooks from Hugging Face Hub when new discussion comments are posted
  • AI-Powered Responses: Uses Hugging Face Inference API with MCP support for intelligent, context-aware responses
  • Interactive Dashboard: Beautiful Gradio interface to monitor comments and test functionality
  • Automatic Posting: Posts AI responses back to the original discussion thread
  • Testing Tools: Built-in webhook simulation and AI testing capabilities
  • MCP Server: Includes a Model Context Protocol server for advanced tool integration

πŸš€ Quick Start

1. Installation

# Clone the repository
git clone <your-repo-url>
cd mcp-course-unit3-example

# Install dependencies
pip install -e .

2. Environment Setup

Copy the example environment file and configure your API keys:

cp env.example .env

Edit .env with your credentials:

# Webhook Configuration
WEBHOOK_SECRET=your-secure-webhook-secret

# Hugging Face Configuration  
HF_TOKEN=hf_your_hugging_face_token_here

# Model Configuration (optional)
HF_MODEL=microsoft/DialoGPT-medium
HF_PROVIDER=huggingface

3. Run the Application

python server.py

The application will start on http://localhost:8000 with:

  • πŸ“Š Gradio Dashboard: http://localhost:8000/gradio
  • πŸ”— Webhook Endpoint: http://localhost:8000/webhook
  • πŸ“‹ API Documentation: http://localhost:8000/docs

πŸ”§ Configuration

Hugging Face Hub Webhook Setup

  1. Go to your Hugging Face repository settings
  2. Navigate to the "Webhooks" section
  3. Create a new webhook with:
    • URL: https://your-domain.com/webhook
    • Secret: Same as WEBHOOK_SECRET in your .env
    • Events: Subscribe to "Community (PR & discussions)"

Required API Keys

Hugging Face Token

  1. Go to Hugging Face Settings
  2. Create a new token with "Write" permissions
  3. Add it to your .env as HF_TOKEN

πŸ“Š Dashboard Features

Recent Comments Tab

  • View all processed discussion comments
  • See AI responses in real-time
  • Refresh and filter capabilities

Test HF Inference Tab

  • Direct testing of the Hugging Face Inference API
  • Custom prompt input
  • Response preview

Simulate Webhook Tab

  • Test webhook processing without real HF events
  • Mock discussion scenarios
  • Validate AI response generation

Configuration Tab

  • View current setup status
  • Check API key configuration
  • Monitor processing statistics

πŸ”Œ API Endpoints

POST /webhook

Receives webhooks from Hugging Face Hub.

Headers:

  • X-Webhook-Secret: Your webhook secret

Body: HF Hub webhook payload

GET /comments

Returns all processed comments and responses.

GET /

Basic API information and available endpoints.

πŸ€– MCP Server

The application includes a Model Context Protocol (MCP) server that provides tools for:

  • get_discussions: Retrieve discussions from HF repositories
  • get_discussion_details: Get detailed information about specific discussions
  • comment_on_discussion: Add comments to discussions
  • generate_ai_response: Generate AI responses using HF Inference
  • respond_to_discussion: Generate and post AI responses automatically

Running the MCP Server

python mcp_server.py

The MCP server uses stdio transport and can be integrated with MCP clients following the Tiny Agents pattern.

πŸ§ͺ Testing

Local Testing

Use the "Simulate Webhook" tab in the Gradio dashboard to test without real webhooks.

Webhook Testing

You can test the webhook endpoint directly:

curl -X POST http://localhost:8000/webhook \
  -H "Content-Type: application/json" \
  -H "X-Webhook-Secret: your-webhook-secret" \
  -d '{
    "event": {"action": "create", "scope": "discussion.comment"},
    "comment": {
      "content": "@discussion-bot How do I use this model?",
      "author": "test-user",
      "created_at": "2024-01-01T00:00:00Z"
    },
    "discussion": {
      "title": "Test Discussion",
      "num": 1,
      "url": {"api": "https://huggingface.co/api/repos/test/repo/discussions"}
    },
    "repo": {"name": "test/repo"}
  }'

πŸ—οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   HF Hub        │───▢│   FastAPI       │───▢│   HF Inference  β”‚
β”‚   Webhook       β”‚    β”‚   Server        β”‚    β”‚   API           β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                              β”‚
                              β–Ό
                       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                       β”‚   Gradio        β”‚
                       β”‚   Dashboard     β”‚
                       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                              β”‚
                              β–Ό
                       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                       β”‚   MCP Server    β”‚
                       β”‚   (Tools)       β”‚
                       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ”’ Security

  • Webhook secret verification prevents unauthorized requests
  • Environment variables keep sensitive data secure
  • CORS middleware configured for safe cross-origin requests

πŸš€ Deployment

Using Docker (Recommended)

FROM python:3.11-slim

WORKDIR /app
COPY . .
RUN pip install -e .

EXPOSE 8000
CMD ["python", "server.py"]

Using Cloud Platforms

The application can be deployed on:

  • Hugging Face Spaces (recommended for HF integration)
  • Railway
  • Render
  • Heroku
  • AWS/GCP/Azure

🀝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

πŸ“ License

This project is licensed under the MIT License.

πŸ†˜ Support

If you encounter issues:

  1. Check the Configuration tab in the dashboard
  2. Verify your API keys are correct
  3. Ensure webhook URL is accessible
  4. Check the application logs

For additional help, please open an issue in the repository.

πŸ”— Related Links