mchinea
add tools
2f8eaba
raw
history blame
10.9 kB
import os
import random
import requests
import tempfile
import re
from typing import Dict
from pathlib import Path
from markitdown import MarkItDown
from urllib.parse import urlparse
from langchain_core.tools import tool
from langchain_core.messages import ToolMessage
from langchain_tavily import TavilySearch
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
@tool
def web_search(query: str) -> ToolMessage:
"""Search in the web with Tavily for a query and return maximum 5 results.
Args:
query: The search query.
Returns:
Tavily output, and snippet for the top 5 results
"""
return TavilySearch(max_results=5, include_images=False).invoke({"query": query})
@tool
def wikipedia_search(query: str) -> Dict[str, list]:
"""Search Wikipedia for a given query and return the first 5 results.
Args:
query: The search term or topic.
Returns:
A dictionary containing the formatted Wikipedia results.
"""
search_docs = WikipediaLoader(query=query, load_max_docs=5).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
]
)
return {"wiki_results": formatted_search_docs}
#Mathematical tools
@tool
def multiply(a: float, b: float) -> float:
"""Multiply two numbers.
Args:
a: first number
b: second number
Returns:
Multiplication result
"""
return a * b
@tool
def add(a: float, b: float) -> float:
"""Add two numbers.
Args:
a: first number
b: second number
Returns:
Addition result
"""
return a + b
@tool
def subtract(a: float, b: float) -> float:
"""Subtract two numbers.
Args:
a: first number
b: second number
Returns:
Subtraction result
"""
return a - b
@tool
def divide(a: float, b: float) -> float:
"""Divide two numbers.
Args:
a: first number
b: second number
Returns:
Division result
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first number
b: second number
Returns:
Modulus result
"""
return a % b
from langchain_core.tools import tool
@tool
def convert_units(value: float, from_unit: str, to_unit: str) -> float:
"""
Converts a value from one unit to another.
Args:
value: The numerical value to convert.
from_unit: The original unit (e.g. 'miles', 'kg', 'celsius').
to_unit: The target unit (e.g. 'kilometers', 'lb', 'fahrenheit').
Supported conversions:
- miles <-> kilometers
- kilograms <-> pounds
- celsius <-> fahrenheit
Returns:
The converted value result.
"""
conversions = {
("miles", "kilometers"): lambda v: v * 1.60934,
("kilometers", "miles"): lambda v: v / 1.60934,
("kilograms", "pounds"): lambda v: v * 2.20462,
("pounds", "kilograms"): lambda v: v / 2.20462,
("celsius", "fahrenheit"): lambda v: (v * 9/5) + 32,
("fahrenheit", "celsius"): lambda v: (v - 32) * 5/9,
}
key = (from_unit.lower(), to_unit.lower())
if key not in conversions:
raise ValueError(f"Conversion from {from_unit} to {to_unit} not supported.")
return conversions[key](value)
def convert_query_to_pandas_syntax(natural_query: str, column_names: list) -> str:
"""
Converts a natural language query to pandas query syntax using basic heuristics.
Args:
natural_query: A string with a question or filter expression in plain English.
column_names: List of column names from the DataFrame.
Returns:
A best-effort string in pandas query() format.
"""
# Preprocess query
query = natural_query.lower().strip()
# Heuristic rules
rules = [
(r"(\w+) greater than (\d+)", r"\1 > \2"),
(r"(\w+) less than (\d+)", r"\1 < \2"),
(r"(\w+) equal to ['\"]?([\w\s]+)['\"]?", r"\1 == '\2'"),
(r"(\w+) not equal to ['\"]?([\w\s]+)['\"]?", r"\1 != '\2'"),
(r"(\w+) more than (\d+)", r"\1 > \2"),
(r"(\w+) less than or equal to (\d+)", r"\1 <= \2"),
(r"(\w+) greater than or equal to (\d+)", r"\1 >= \2"),
(r"(\w+) is ['\"]?([\w\s]+)['\"]?", r"\1 == '\2'"),
]
for pattern, replacement in rules:
if re.search(pattern, query):
query = re.sub(pattern, replacement, query)
break
# Handle AND/OR logic
query = query.replace(" and ", " and ")
query = query.replace(" or ", " or ")
return query
@tool
def query_table_data(file_path: str, query_pandas_syntax: str, sheet_name: str = None) -> str:
"""
Loads a table from CSV or Excel and filters it using a pandas query.
Args:
file_path: Path to the table file (.xlsx, .xls).
query_pandas_syntax: A pandas-compatible query string, e.g., "Age > 30 and Country == 'USA'".
sheet_name: Optional sheet name if the file is Excel.
Returns:
A string representation (markdown) of the filtered table (max 10 rows).
"""
try:
import pandas as pd
path = Path(file_path)
if not path.exists():
raise FileNotFoundError(f"File not found: {file_path}")
ext = path.suffix.lower()
if ext == ".csv":
df = pd.read_csv(path)
elif ext in [".xlsx", ".xls"]:
df = pd.read_excel(path, sheet_name=sheet_name)
else:
raise ValueError(f"Unsupported file extension: {ext}")
try:
filtered_df = df.query(query_pandas_syntax)
return filtered_df.head(10).to_markdown(index=False)
except Exception as e:
raise ValueError(f"Invalid query: {query_pandas_syntax}. Error: {e}")
except ImportError:
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 5 result.
Args:
query: The search query.
Returns:
A dictionary containing the formatted Arvix results, and snippet for the top 5 results.
"""
search_docs = ArxivLoader(query=query, load_max_docs=5).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
@tool
def read_python_file(file_path: str) -> str:
"""
Reads and parses an Python file to markdown.
Args:
file_path: Path to the Python file
Returns:
Python file content.
"""
try:
# Just with markitdown
path = Path(file_path)
if not path.exists():
raise FileNotFoundError(f"File not found: {file_path}")
ext = path.suffix.lower()
if ext == ".py":
md = MarkItDown(enable_plugins=True)
result = md.convert(file_path)
return result.text_content
else:
raise ValueError(f"Unsupported file extension: {ext}")
except Exception as err:
raise type(err)(f"Could not parse python file > {err}")
@tool
def save_and_read_file(content: str, filename: str = None) -> str:
"""
Save content to a temporary file and return the path.
Useful for processing files from the GAIA API.
Args:
content: The content to save to the file
filename: Optional filename, will generate a random name if not provided
Returns:
Path to the saved file
"""
temp_dir = tempfile.gettempdir()
if filename is None:
temp_file = tempfile.NamedTemporaryFile(delete=False)
filepath = temp_file.name
else:
filepath = os.path.join(temp_dir, filename)
# Write content to the file
with open(filepath, 'w') as f:
f.write(content)
return f"File saved to {filepath}. You can read this file to process its contents."
def download_file_from_url(url: str, filename: str) -> str:
"""
Download a file from a URL and save it to a temporary location.
Args:
url: The URL to download from
filename: filename
Returns:
Path to the downloaded file
"""
try:
# Parse URL to get filename if not provided
if not filename:
path = urlparse(url).path
filename = os.path.basename(path)
if not filename:
# Generate a random name if we couldn't extract one
import uuid
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
# Create temporary file
temp_dir = tempfile.gettempdir()
filepath = os.path.join(temp_dir, filename)
# Download the file
response = requests.get(url, stream=True)
response.raise_for_status()
# Save the file
with open(filepath, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return f"File downloaded to {filepath}. You can now process this file."
except Exception as e:
return f"Error downloading file: {str(e)}"
@tool
def extract_text_from_image(image_path: str) -> str:
"""
Extracts text from an image using pytesseract OCR.
Args:
image_path: Path to the image file.
Returns:
A string with the extracted text or an error message.
"""
try:
from PIL import Image
import pytesseract
# Load the image
image = Image.open(image_path)
# Perform OCR
text = pytesseract.image_to_string(image)
return f"Extracted text from image:\n\n{text.strip()}"
except ImportError:
return (
"Error: pytesseract or PIL is not installed. "
"Install them with 'pip install pytesseract pillow' and ensure Tesseract OCR is installed."
)
except FileNotFoundError:
return f"Error: File not found at '{image_path}'."
except Exception as e:
return f"Unexpected error during OCR: {str(e)}"
level1_tools = [
multiply,
add,
subtract,
divide,
modulus,
wikipedia_search,
web_search,
arvix_search,
convert_units,
convert_query_to_pandas_syntax,
query_table_data,
download_file_from_url,
save_and_read_file,
read_python_file,
extract_text_from_image
]