File size: 10,856 Bytes
a92d3ed
 
5ef9706
 
 
a92d3ed
 
 
5ef9706
 
a92d3ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef9706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a92d3ed
5ef9706
a92d3ed
 
 
 
 
5ef9706
a92d3ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef9706
a92d3ed
 
5ef9706
a92d3ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef9706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9c930b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a92d3ed
 
 
 
 
 
 
 
 
 
5ef9706
 
 
 
2f8eaba
 
a92d3ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import os
import random
import requests
import tempfile
import re

from typing import Dict
from pathlib import Path
from markitdown import MarkItDown
from urllib.parse import urlparse

from langchain_core.tools import tool

from langchain_core.messages import ToolMessage
from langchain_tavily import TavilySearch
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader

@tool
def web_search(query: str) -> ToolMessage:
    """Search in the web with Tavily for a query and return maximum 5 results.
    Args:
        query: The search query.
    Returns:
        Tavily output, and snippet for the top 5 results
    """
    return TavilySearch(max_results=5, include_images=False).invoke({"query": query})


@tool
def wikipedia_search(query: str) -> Dict[str, list]:
    """Search Wikipedia for a given query and return the first 5 results.
    Args:
        query: The search term or topic.
    Returns:
        A dictionary containing the formatted Wikipedia results.
    """
    search_docs = WikipediaLoader(query=query, load_max_docs=5).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"wiki_results": formatted_search_docs}


#Mathematical tools
@tool
def multiply(a: float, b: float) -> float:
    """Multiply two numbers.
    Args:
        a: first number
        b: second number
    Returns: 
        Multiplication result
    """
    return a * b


@tool
def add(a: float, b: float) -> float:
    """Add two numbers.
    Args:
        a: first number
        b: second number
    Returns: 
        Addition result
    """
    return a + b


@tool
def subtract(a: float, b: float) -> float:
    """Subtract two numbers.
    Args:
        a: first number
        b: second number
    Returns: 
        Subtraction result
    """
    return a - b


@tool
def divide(a: float, b: float) -> float:
    """Divide two numbers.
    Args:
        a: first number
        b: second number
    Returns: 
        Division result
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b


@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.
    Args:
        a: first number
        b: second number
    Returns:
        Modulus result
    """
    return a % b

from langchain_core.tools import tool


@tool
def convert_units(value: float, from_unit: str, to_unit: str) -> float:
    """
    Converts a value from one unit to another.

    Args:
        value: The numerical value to convert.
        from_unit: The original unit (e.g. 'miles', 'kg', 'celsius').
        to_unit: The target unit (e.g. 'kilometers', 'lb', 'fahrenheit').

    Supported conversions:
        - miles <-> kilometers
        - kilograms <-> pounds
        - celsius <-> fahrenheit

    Returns:
        The converted value result.
    """
    conversions = {
        ("miles", "kilometers"): lambda v: v * 1.60934,
        ("kilometers", "miles"): lambda v: v / 1.60934,
        ("kilograms", "pounds"): lambda v: v * 2.20462,
        ("pounds", "kilograms"): lambda v: v / 2.20462,
        ("celsius", "fahrenheit"): lambda v: (v * 9/5) + 32,
        ("fahrenheit", "celsius"): lambda v: (v - 32) * 5/9,
    }

    key = (from_unit.lower(), to_unit.lower())
    if key not in conversions:
        raise ValueError(f"Conversion from {from_unit} to {to_unit} not supported.")

    return conversions[key](value)


def convert_query_to_pandas_syntax(natural_query: str, column_names: list) -> str:
    """
    Converts a natural language query to pandas query syntax using basic heuristics.
    
    Args:
        natural_query: A string with a question or filter expression in plain English.
        column_names: List of column names from the DataFrame.

    Returns:
        A best-effort string in pandas query() format.
    """
    # Preprocess query
    query = natural_query.lower().strip()

    # Heuristic rules
    rules = [
        (r"(\w+) greater than (\d+)", r"\1 > \2"),
        (r"(\w+) less than (\d+)", r"\1 < \2"),
        (r"(\w+) equal to ['\"]?([\w\s]+)['\"]?", r"\1 == '\2'"),
        (r"(\w+) not equal to ['\"]?([\w\s]+)['\"]?", r"\1 != '\2'"),
        (r"(\w+) more than (\d+)", r"\1 > \2"),
        (r"(\w+) less than or equal to (\d+)", r"\1 <= \2"),
        (r"(\w+) greater than or equal to (\d+)", r"\1 >= \2"),
        (r"(\w+) is ['\"]?([\w\s]+)['\"]?", r"\1 == '\2'"),
    ]

    for pattern, replacement in rules:
        if re.search(pattern, query):
            query = re.sub(pattern, replacement, query)
            break

    # Handle AND/OR logic
    query = query.replace(" and ", " and ")
    query = query.replace(" or ", " or ")

    return query


@tool
def query_table_data(file_path: str, query_pandas_syntax: str, sheet_name: str = None) -> str:
    """
    Loads a table from CSV or Excel and filters it using a pandas query.

    Args:
        file_path: Path to the table file (.xlsx, .xls).
        query_pandas_syntax: A pandas-compatible query string, e.g., "Age > 30 and Country == 'USA'".
        sheet_name: Optional sheet name if the file is Excel.

    Returns:
        A string representation (markdown) of the filtered table (max 10 rows).
    """
    try:
        import pandas as pd
        path = Path(file_path)
        if not path.exists():
           raise FileNotFoundError(f"File not found: {file_path}")
        ext = path.suffix.lower()
        if ext == ".csv":
           df = pd.read_csv(path)
        elif ext in [".xlsx", ".xls"]:
           df = pd.read_excel(path, sheet_name=sheet_name)
        else:
           raise ValueError(f"Unsupported file extension: {ext}")
        try:
           filtered_df = df.query(query_pandas_syntax)
           return filtered_df.head(10).to_markdown(index=False)
        except Exception as e:
           raise ValueError(f"Invalid query: {query_pandas_syntax}. Error: {e}")
    except ImportError:
        return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
    

@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 5 result.
    Args:
     query: The search query.
    Returns:
       A dictionary containing the formatted Arvix results, and snippet for the top 5 results.
    """
    search_docs = ArxivLoader(query=query, load_max_docs=5).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ])
    return {"arvix_results": formatted_search_docs}


@tool
def read_python_file(file_path: str) -> str:
    """
    Reads and parses an Python file to markdown.
    Args:
        file_path: Path to the Python file
    Returns:
       Python file content.
    """

    try:
        # Just with markitdown
        path = Path(file_path)
        if not path.exists():
           raise FileNotFoundError(f"File not found: {file_path}")
        ext = path.suffix.lower()
        if ext == ".py":
           md = MarkItDown(enable_plugins=True)
           result = md.convert(file_path)
           return result.text_content
        else:
           raise ValueError(f"Unsupported file extension: {ext}")
    except Exception as err:
        raise type(err)(f"Could not parse python file > {err}")


@tool
def save_and_read_file(content: str, filename: str = None) -> str:
    """
    Save content to a temporary file and return the path.
    Useful for processing files from the GAIA API.
    
    Args:
        content: The content to save to the file
        filename: Optional filename, will generate a random name if not provided
        
    Returns:
        Path to the saved file
    """
    temp_dir = tempfile.gettempdir()
    if filename is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False)
        filepath = temp_file.name
    else:
        filepath = os.path.join(temp_dir, filename)
    
    # Write content to the file
    with open(filepath, 'w') as f:
        f.write(content)
    
    return f"File saved to {filepath}. You can read this file to process its contents."



def download_file_from_url(url: str, filename: str) -> str:
    """
    Download a file from a URL and save it to a temporary location.
    Args:
        url: The URL to download from
        filename: filename
    Returns:
        Path to the downloaded file
    """
    try:
        # Parse URL to get filename if not provided
        if not filename:
            path = urlparse(url).path
            filename = os.path.basename(path)
            if not filename:
                # Generate a random name if we couldn't extract one
                import uuid

                filename = f"downloaded_{uuid.uuid4().hex[:8]}"

        # Create temporary file
        temp_dir = tempfile.gettempdir()
        filepath = os.path.join(temp_dir, filename)

        # Download the file
        response = requests.get(url, stream=True)
        response.raise_for_status()

        # Save the file
        with open(filepath, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)

        return f"File downloaded to {filepath}. You can now process this file."
    except Exception as e:
        return f"Error downloading file: {str(e)}"


@tool
def extract_text_from_image(image_path: str) -> str:
    """
    Extracts text from an image using pytesseract OCR.

    Args:
        image_path: Path to the image file.

    Returns:
        A string with the extracted text or an error message.
    """
    try:
        from PIL import Image
        import pytesseract

        # Load the image
        image = Image.open(image_path)

        # Perform OCR
        text = pytesseract.image_to_string(image)

        return f"Extracted text from image:\n\n{text.strip()}"
    except ImportError:
        return (
            "Error: pytesseract or PIL is not installed. "
            "Install them with 'pip install pytesseract pillow' and ensure Tesseract OCR is installed."
        )
    except FileNotFoundError:
        return f"Error: File not found at '{image_path}'."
    except Exception as e:
        return f"Unexpected error during OCR: {str(e)}"


level1_tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wikipedia_search,
    web_search,
    arvix_search,
    convert_units,
    convert_query_to_pandas_syntax,
    query_table_data,
    download_file_from_url,
    save_and_read_file,
    read_python_file,
    extract_text_from_image
]