File size: 5,613 Bytes
a92d3ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import random

from typing import Dict
from pathlib import Path

from langchain_core.tools import tool

from langchain_core.messages import ToolMessage
from langchain_tavily import TavilySearch
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader

@tool
def web_search(query: str) -> ToolMessage:
    """Search in the web with Tavily for a query and return maximum 5 results.
    Args:
        query: The search query.
    Returns:
        Tavily output, and snippet for the top 5 results
    """
    return TavilySearch(max_results=5, include_images=False).invoke({"query": query})


@tool
def wikipedia_search(query: str) -> Dict[str, list]:
    """Search Wikipedia for a given query and return the first 5 results.
    Args:
        query: The search term or topic.
    Returns:
        A dictionary containing the formatted Wikipedia results.
    """
    search_docs = WikipediaLoader(query=query, load_max_docs=5).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"wiki_results": formatted_search_docs}


#Mathematical tools
@tool
def multiply(a: float, b: float) -> float:
    """Multiply two numbers.
    Args:
        a: first number
        b: second number
    Returns: 
        Multiplication result
    """
    return a * b


@tool
def add(a: float, b: float) -> float:
    """Add two numbers.
    Args:
        a: first number
        b: second number
    Returns: 
        Addition result
    """
    return a + b


@tool
def subtract(a: float, b: float) -> float:
    """Subtract two numbers.
    Args:
        a: first number
        b: second number
    Returns: 
        Subtraction result
    """
    return a - b


@tool
def divide(a: float, b: float) -> float:
    """Divide two numbers.
    Args:
        a: first number
        b: second number
    Returns: 
        Division result
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b


@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.
    Args:
        a: first number
        b: second number
    Returns:
        Modulus result
    """
    return a % b

from langchain_core.tools import tool


@tool
def convert_units(value: float, from_unit: str, to_unit: str) -> float:
    """
    Converts a value from one unit to another.

    Args:
        value: The numerical value to convert.
        from_unit: The original unit (e.g. 'miles', 'kg', 'celsius').
        to_unit: The target unit (e.g. 'kilometers', 'lb', 'fahrenheit').

    Supported conversions:
        - miles <-> kilometers
        - kilograms <-> pounds
        - celsius <-> fahrenheit

    Returns:
        The converted value result.
    """
    conversions = {
        ("miles", "kilometers"): lambda v: v * 1.60934,
        ("kilometers", "miles"): lambda v: v / 1.60934,
        ("kilograms", "pounds"): lambda v: v * 2.20462,
        ("pounds", "kilograms"): lambda v: v / 2.20462,
        ("celsius", "fahrenheit"): lambda v: (v * 9/5) + 32,
        ("fahrenheit", "celsius"): lambda v: (v - 32) * 5/9,
    }

    key = (from_unit.lower(), to_unit.lower())
    if key not in conversions:
        raise ValueError(f"Conversion from {from_unit} to {to_unit} not supported.")

    return conversions[key](value)

@tool
def query_table_data(file_path: str, query: str, sheet_name: str = None) -> str:
    """
    Loads a table from CSV or Excel and filters it using a pandas query.

    Args:
        file_path: Path to the table file (.xlsx, .xls).
        query: A pandas-compatible query string, e.g., "Age > 30 and Country == 'USA'".
        sheet_name: Optional sheet name if the file is Excel.

    Returns:
        A string representation (markdown) of the filtered table (max 10 rows).
    """
    try:
        import pandas as pd
        path = Path(file_path)
        if not path.exists():
           raise FileNotFoundError(f"File not found: {file_path}")
        ext = path.suffix.lower()
        if ext == ".csv":
           df = pd.read_csv(path)
        elif ext in [".xlsx", ".xls"]:
           df = pd.read_excel(path, sheet_name=sheet_name)
        else:
           raise ValueError(f"Unsupported file extension: {ext}")
        try:
           filtered_df = df.query(query)
           return filtered_df.head(10).to_markdown(index=False)
        except Exception as e:
           raise ValueError(f"Invalid query: {query}. Error: {e}")
    except ImportError:
        return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
    

@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 5 result.
    Args:
     query: The search query.
    Returns:
       A dictionary containing the formatted Arvix results, and snippet for the top 5 results.
    """
    search_docs = ArxivLoader(query=query, load_max_docs=5).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ])
    return {"arvix_results": formatted_search_docs}


level1_tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wikipedia_search,
    web_search,
    arvix_search,
    convert_units,
    query_table_data
]