Spaces:
Sleeping
Sleeping
File size: 5,613 Bytes
a92d3ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import os
import random
from typing import Dict
from pathlib import Path
from langchain_core.tools import tool
from langchain_core.messages import ToolMessage
from langchain_tavily import TavilySearch
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
@tool
def web_search(query: str) -> ToolMessage:
"""Search in the web with Tavily for a query and return maximum 5 results.
Args:
query: The search query.
Returns:
Tavily output, and snippet for the top 5 results
"""
return TavilySearch(max_results=5, include_images=False).invoke({"query": query})
@tool
def wikipedia_search(query: str) -> Dict[str, list]:
"""Search Wikipedia for a given query and return the first 5 results.
Args:
query: The search term or topic.
Returns:
A dictionary containing the formatted Wikipedia results.
"""
search_docs = WikipediaLoader(query=query, load_max_docs=5).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
]
)
return {"wiki_results": formatted_search_docs}
#Mathematical tools
@tool
def multiply(a: float, b: float) -> float:
"""Multiply two numbers.
Args:
a: first number
b: second number
Returns:
Multiplication result
"""
return a * b
@tool
def add(a: float, b: float) -> float:
"""Add two numbers.
Args:
a: first number
b: second number
Returns:
Addition result
"""
return a + b
@tool
def subtract(a: float, b: float) -> float:
"""Subtract two numbers.
Args:
a: first number
b: second number
Returns:
Subtraction result
"""
return a - b
@tool
def divide(a: float, b: float) -> float:
"""Divide two numbers.
Args:
a: first number
b: second number
Returns:
Division result
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first number
b: second number
Returns:
Modulus result
"""
return a % b
from langchain_core.tools import tool
@tool
def convert_units(value: float, from_unit: str, to_unit: str) -> float:
"""
Converts a value from one unit to another.
Args:
value: The numerical value to convert.
from_unit: The original unit (e.g. 'miles', 'kg', 'celsius').
to_unit: The target unit (e.g. 'kilometers', 'lb', 'fahrenheit').
Supported conversions:
- miles <-> kilometers
- kilograms <-> pounds
- celsius <-> fahrenheit
Returns:
The converted value result.
"""
conversions = {
("miles", "kilometers"): lambda v: v * 1.60934,
("kilometers", "miles"): lambda v: v / 1.60934,
("kilograms", "pounds"): lambda v: v * 2.20462,
("pounds", "kilograms"): lambda v: v / 2.20462,
("celsius", "fahrenheit"): lambda v: (v * 9/5) + 32,
("fahrenheit", "celsius"): lambda v: (v - 32) * 5/9,
}
key = (from_unit.lower(), to_unit.lower())
if key not in conversions:
raise ValueError(f"Conversion from {from_unit} to {to_unit} not supported.")
return conversions[key](value)
@tool
def query_table_data(file_path: str, query: str, sheet_name: str = None) -> str:
"""
Loads a table from CSV or Excel and filters it using a pandas query.
Args:
file_path: Path to the table file (.xlsx, .xls).
query: A pandas-compatible query string, e.g., "Age > 30 and Country == 'USA'".
sheet_name: Optional sheet name if the file is Excel.
Returns:
A string representation (markdown) of the filtered table (max 10 rows).
"""
try:
import pandas as pd
path = Path(file_path)
if not path.exists():
raise FileNotFoundError(f"File not found: {file_path}")
ext = path.suffix.lower()
if ext == ".csv":
df = pd.read_csv(path)
elif ext in [".xlsx", ".xls"]:
df = pd.read_excel(path, sheet_name=sheet_name)
else:
raise ValueError(f"Unsupported file extension: {ext}")
try:
filtered_df = df.query(query)
return filtered_df.head(10).to_markdown(index=False)
except Exception as e:
raise ValueError(f"Invalid query: {query}. Error: {e}")
except ImportError:
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 5 result.
Args:
query: The search query.
Returns:
A dictionary containing the formatted Arvix results, and snippet for the top 5 results.
"""
search_docs = ArxivLoader(query=query, load_max_docs=5).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
level1_tools = [
multiply,
add,
subtract,
divide,
modulus,
wikipedia_search,
web_search,
arvix_search,
convert_units,
query_table_data
] |