Spaces:
Sleeping
Sleeping
mchinea
commited on
Commit
·
a92d3ed
1
Parent(s):
81917a3
add my agent and tools
Browse files
agent.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""LangGraph Agent"""
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
|
5 |
+
from langchain_openai import ChatOpenAI
|
6 |
+
|
7 |
+
from langgraph.graph import START, StateGraph
|
8 |
+
from langgraph.prebuilt import tools_condition, ToolNode
|
9 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
10 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
11 |
+
|
12 |
+
from tools import level1_tools
|
13 |
+
|
14 |
+
load_dotenv()
|
15 |
+
|
16 |
+
# Build graph function
|
17 |
+
def build_agent_graph():
|
18 |
+
"""Build the graph"""
|
19 |
+
# Load environment variables from .env file
|
20 |
+
llm = ChatOpenAI(model="gpt-4o-mini")
|
21 |
+
|
22 |
+
# Bind tools to LLM
|
23 |
+
llm_with_tools = llm.bind_tools(level1_tools)
|
24 |
+
|
25 |
+
# Node
|
26 |
+
def assistant(state: MessagesState):
|
27 |
+
"""Assistant node"""
|
28 |
+
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
29 |
+
|
30 |
+
|
31 |
+
builder = StateGraph(MessagesState)
|
32 |
+
builder.add_node("assistant", assistant)
|
33 |
+
builder.add_node("tools", ToolNode(level1_tools))
|
34 |
+
builder.add_edge(START, "assistant")
|
35 |
+
builder.add_conditional_edges(
|
36 |
+
"assistant",
|
37 |
+
tools_condition,
|
38 |
+
)
|
39 |
+
builder.add_edge("tools", "assistant")
|
40 |
+
|
41 |
+
# Compile graph
|
42 |
+
return builder.compile()
|
43 |
+
|
44 |
+
|
45 |
+
# test
|
46 |
+
if __name__ == "__main__":
|
47 |
+
question1 = "How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)?"
|
48 |
+
question2 = "Convert 10 miles to kilometers."
|
49 |
+
# Build the graph
|
50 |
+
graph = build_agent_graph()
|
51 |
+
# Run the graph
|
52 |
+
messages = [HumanMessage(content=question1)]
|
53 |
+
messages = graph.invoke({"messages": messages})
|
54 |
+
for m in messages["messages"]:
|
55 |
+
m.pretty_print()
|
app.py
CHANGED
@@ -4,15 +4,17 @@ import requests
|
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
|
|
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
# --- Basic Agent Definition ---
|
12 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
-
class
|
14 |
def __init__(self):
|
15 |
-
print("
|
|
|
16 |
def __call__(self, question: str) -> str:
|
17 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
fixed_answer = "This is a default answer."
|
@@ -40,7 +42,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
40 |
|
41 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
try:
|
43 |
-
agent =
|
44 |
except Exception as e:
|
45 |
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
|
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
|
7 |
+
from agent import build_agent_graph
|
8 |
# (Keep Constants as is)
|
9 |
# --- Constants ---
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
|
12 |
# --- Basic Agent Definition ---
|
13 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
14 |
+
class MyAgent:
|
15 |
def __init__(self):
|
16 |
+
print("MyAgent initialized.")
|
17 |
+
self.graph = build_agent_graph()
|
18 |
def __call__(self, question: str) -> str:
|
19 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
20 |
fixed_answer = "This is a default answer."
|
|
|
42 |
|
43 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
44 |
try:
|
45 |
+
agent = MyAgent()
|
46 |
except Exception as e:
|
47 |
print(f"Error instantiating agent: {e}")
|
48 |
return f"Error initializing agent: {e}", None
|
tools.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
|
4 |
+
from typing import Dict
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
from langchain_core.tools import tool
|
8 |
+
|
9 |
+
from langchain_core.messages import ToolMessage
|
10 |
+
from langchain_tavily import TavilySearch
|
11 |
+
from langchain_community.document_loaders import WikipediaLoader
|
12 |
+
from langchain_community.document_loaders import ArxivLoader
|
13 |
+
|
14 |
+
@tool
|
15 |
+
def web_search(query: str) -> ToolMessage:
|
16 |
+
"""Search in the web with Tavily for a query and return maximum 5 results.
|
17 |
+
Args:
|
18 |
+
query: The search query.
|
19 |
+
Returns:
|
20 |
+
Tavily output, and snippet for the top 5 results
|
21 |
+
"""
|
22 |
+
return TavilySearch(max_results=5, include_images=False).invoke({"query": query})
|
23 |
+
|
24 |
+
|
25 |
+
@tool
|
26 |
+
def wikipedia_search(query: str) -> Dict[str, list]:
|
27 |
+
"""Search Wikipedia for a given query and return the first 5 results.
|
28 |
+
Args:
|
29 |
+
query: The search term or topic.
|
30 |
+
Returns:
|
31 |
+
A dictionary containing the formatted Wikipedia results.
|
32 |
+
"""
|
33 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=5).load()
|
34 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
35 |
+
[
|
36 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
37 |
+
for doc in search_docs
|
38 |
+
]
|
39 |
+
)
|
40 |
+
return {"wiki_results": formatted_search_docs}
|
41 |
+
|
42 |
+
|
43 |
+
#Mathematical tools
|
44 |
+
@tool
|
45 |
+
def multiply(a: float, b: float) -> float:
|
46 |
+
"""Multiply two numbers.
|
47 |
+
Args:
|
48 |
+
a: first number
|
49 |
+
b: second number
|
50 |
+
Returns:
|
51 |
+
Multiplication result
|
52 |
+
"""
|
53 |
+
return a * b
|
54 |
+
|
55 |
+
|
56 |
+
@tool
|
57 |
+
def add(a: float, b: float) -> float:
|
58 |
+
"""Add two numbers.
|
59 |
+
Args:
|
60 |
+
a: first number
|
61 |
+
b: second number
|
62 |
+
Returns:
|
63 |
+
Addition result
|
64 |
+
"""
|
65 |
+
return a + b
|
66 |
+
|
67 |
+
|
68 |
+
@tool
|
69 |
+
def subtract(a: float, b: float) -> float:
|
70 |
+
"""Subtract two numbers.
|
71 |
+
Args:
|
72 |
+
a: first number
|
73 |
+
b: second number
|
74 |
+
Returns:
|
75 |
+
Subtraction result
|
76 |
+
"""
|
77 |
+
return a - b
|
78 |
+
|
79 |
+
|
80 |
+
@tool
|
81 |
+
def divide(a: float, b: float) -> float:
|
82 |
+
"""Divide two numbers.
|
83 |
+
Args:
|
84 |
+
a: first number
|
85 |
+
b: second number
|
86 |
+
Returns:
|
87 |
+
Division result
|
88 |
+
"""
|
89 |
+
if b == 0:
|
90 |
+
raise ValueError("Cannot divide by zero.")
|
91 |
+
return a / b
|
92 |
+
|
93 |
+
|
94 |
+
@tool
|
95 |
+
def modulus(a: int, b: int) -> int:
|
96 |
+
"""Get the modulus of two numbers.
|
97 |
+
Args:
|
98 |
+
a: first number
|
99 |
+
b: second number
|
100 |
+
Returns:
|
101 |
+
Modulus result
|
102 |
+
"""
|
103 |
+
return a % b
|
104 |
+
|
105 |
+
from langchain_core.tools import tool
|
106 |
+
|
107 |
+
|
108 |
+
@tool
|
109 |
+
def convert_units(value: float, from_unit: str, to_unit: str) -> float:
|
110 |
+
"""
|
111 |
+
Converts a value from one unit to another.
|
112 |
+
|
113 |
+
Args:
|
114 |
+
value: The numerical value to convert.
|
115 |
+
from_unit: The original unit (e.g. 'miles', 'kg', 'celsius').
|
116 |
+
to_unit: The target unit (e.g. 'kilometers', 'lb', 'fahrenheit').
|
117 |
+
|
118 |
+
Supported conversions:
|
119 |
+
- miles <-> kilometers
|
120 |
+
- kilograms <-> pounds
|
121 |
+
- celsius <-> fahrenheit
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
The converted value result.
|
125 |
+
"""
|
126 |
+
conversions = {
|
127 |
+
("miles", "kilometers"): lambda v: v * 1.60934,
|
128 |
+
("kilometers", "miles"): lambda v: v / 1.60934,
|
129 |
+
("kilograms", "pounds"): lambda v: v * 2.20462,
|
130 |
+
("pounds", "kilograms"): lambda v: v / 2.20462,
|
131 |
+
("celsius", "fahrenheit"): lambda v: (v * 9/5) + 32,
|
132 |
+
("fahrenheit", "celsius"): lambda v: (v - 32) * 5/9,
|
133 |
+
}
|
134 |
+
|
135 |
+
key = (from_unit.lower(), to_unit.lower())
|
136 |
+
if key not in conversions:
|
137 |
+
raise ValueError(f"Conversion from {from_unit} to {to_unit} not supported.")
|
138 |
+
|
139 |
+
return conversions[key](value)
|
140 |
+
|
141 |
+
@tool
|
142 |
+
def query_table_data(file_path: str, query: str, sheet_name: str = None) -> str:
|
143 |
+
"""
|
144 |
+
Loads a table from CSV or Excel and filters it using a pandas query.
|
145 |
+
|
146 |
+
Args:
|
147 |
+
file_path: Path to the table file (.xlsx, .xls).
|
148 |
+
query: A pandas-compatible query string, e.g., "Age > 30 and Country == 'USA'".
|
149 |
+
sheet_name: Optional sheet name if the file is Excel.
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
A string representation (markdown) of the filtered table (max 10 rows).
|
153 |
+
"""
|
154 |
+
try:
|
155 |
+
import pandas as pd
|
156 |
+
path = Path(file_path)
|
157 |
+
if not path.exists():
|
158 |
+
raise FileNotFoundError(f"File not found: {file_path}")
|
159 |
+
ext = path.suffix.lower()
|
160 |
+
if ext == ".csv":
|
161 |
+
df = pd.read_csv(path)
|
162 |
+
elif ext in [".xlsx", ".xls"]:
|
163 |
+
df = pd.read_excel(path, sheet_name=sheet_name)
|
164 |
+
else:
|
165 |
+
raise ValueError(f"Unsupported file extension: {ext}")
|
166 |
+
try:
|
167 |
+
filtered_df = df.query(query)
|
168 |
+
return filtered_df.head(10).to_markdown(index=False)
|
169 |
+
except Exception as e:
|
170 |
+
raise ValueError(f"Invalid query: {query}. Error: {e}")
|
171 |
+
except ImportError:
|
172 |
+
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
|
173 |
+
|
174 |
+
|
175 |
+
@tool
|
176 |
+
def arvix_search(query: str) -> str:
|
177 |
+
"""Search Arxiv for a query and return maximum 5 result.
|
178 |
+
Args:
|
179 |
+
query: The search query.
|
180 |
+
Returns:
|
181 |
+
A dictionary containing the formatted Arvix results, and snippet for the top 5 results.
|
182 |
+
"""
|
183 |
+
search_docs = ArxivLoader(query=query, load_max_docs=5).load()
|
184 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
185 |
+
[
|
186 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
187 |
+
for doc in search_docs
|
188 |
+
])
|
189 |
+
return {"arvix_results": formatted_search_docs}
|
190 |
+
|
191 |
+
|
192 |
+
level1_tools = [
|
193 |
+
multiply,
|
194 |
+
add,
|
195 |
+
subtract,
|
196 |
+
divide,
|
197 |
+
modulus,
|
198 |
+
wikipedia_search,
|
199 |
+
web_search,
|
200 |
+
arvix_search,
|
201 |
+
convert_units,
|
202 |
+
query_table_data
|
203 |
+
]
|