mcamargo00's picture
Upload app.py
d0f548c verified
raw
history blame
21.8 kB
# app.py - Gradio version (much simpler for HF Spaces)
import unsloth
from unsloth import FastModel
import gradio as gr
import logging
import spaces
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from peft import PeftModel
from huggingface_hub import hf_hub_download
import json
import re
import math
import time
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# --- compat shim for newer Phi-3/4 modeling files ---
import transformers as _tf
# Some HF model repos do: `from transformers.utils import LossKwargs`
# Older/newer lib versions may not re-export it, so we provide a fallback.
if not hasattr(_tf.utils, "LossKwargs"):
from typing import Dict, Any
class _LossKwargs(dict):
"""Duck-typed placeholder; used only for type hints / Unpack at runtime."""
pass
_tf.utils.LossKwargs = _LossKwargs
# -----------------------------------------------------
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables for model and tokenizer
label_mapping = {0: "✅ Correct", 1: "🤔 Conceptually Flawed", 2: "🔢 Computationally Flawed"}
# ===================================================================
# 1. DEFINE CUSTOM CLASSIFIER (Required for Phi-4)
# ===================================================================
class GPTSequenceClassifier(nn.Module):
def __init__(self, base_model, num_labels):
super().__init__()
self.base = base_model
hidden_size = base_model.config.hidden_size
self.classifier = nn.Linear(hidden_size, num_labels, bias=True)
self.num_labels = num_labels
def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
outputs = self.base(input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True, **kwargs)
last_hidden_state = outputs.hidden_states[-1]
pooled_output = last_hidden_state[:, -1, :]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
loss = nn.functional.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}
# --- Helper Functions ---
def format_solution_into_json_str(solution_text: str) -> str:
lines = [line.strip() for line in solution_text.strip().split('\n') if line.strip()]
final_answer = ""
if lines and "FINAL ANSWER:" in lines[-1].upper():
final_answer = lines[-1][len("FINAL ANSWER:"):].strip()
lines = lines[:-1]
solution_dict = {f"L{i+1}": line for i, line in enumerate(lines)}
solution_dict["FA"] = final_answer
return json.dumps(solution_dict, indent=2)
def sanitize_equation_string(expression: str) -> str:
if not isinstance(expression, str):
return ""
s = expression.strip()
# Normalize common symbols
s = s.replace('×', '*').replace('·', '*').replace('x', '*')
# Convert percentages like '12%' -> '(12/100)'
s = re.sub(r'(?<!\d)(\d+(?:\.\d+)?)\s*%', r'(\1/100)', s)
# Simple paren balancing trims (only when a single stray exists at an edge)
if s.count('(') > s.count(')') and s.startswith('('):
s = s[1:]
elif s.count(')') > s.count('(') and s.endswith(')'):
s = s[:-1]
# Drop units right after a slash: /hr, /dogs
s = re.sub(r'/([a-zA-Z]+)', '', s)
# Keep only numeric math tokens
s = re.sub(r'[^\d.()+\-*/=%]', '', s)
# Collapse repeated '=' (e.g., '==24/2=12' -> '=24/2=12')
s = re.sub(r'=+', '=', s)
return s
import re, math
def _parse_equation(eq_str: str):
s = sanitize_equation_string(eq_str or "")
s = s.lstrip('=') # handle lines like '=24/2=12'
if '=' not in s:
return None
if s.count('=') > 1:
pos = s.rfind('=')
lhs, rhs = s[:pos], s[pos+1:]
else:
lhs, rhs = s.split('=', 1)
lhs, rhs = lhs.strip(), rhs.strip()
if not lhs or not rhs:
return None
return lhs, rhs
def _abs_tol_from_display(rhs_str: str):
"""
If RHS is a single numeric literal like 0.33, use half-ULP at that precision.
e.g., '0.33' -> 0.5 * 10^-2 = 0.005
Otherwise return None and fall back to base tolerances.
"""
s = rhs_str.strip()
# allow optional parens and sign
m = re.fullmatch(r'\(?\s*[-+]?\d+(?:\.(\d+))?\s*\)?', s)
if not m:
return None
frac = m.group(1) or ""
d = len(frac)
return 0.5 * (10 ** (-d)) if d > 0 else 0.5 # if integer shown, allow ±0.5
def evaluate_equations(eq_dict: dict, sol_dict: dict,
base_rel_tol: float = 1e-6,
base_abs_tol: float = 1e-9,
honor_display_precision: bool = True):
"""
Evaluates extracted equations. Accepts rounded RHS values based on displayed precision.
"""
for key, eq_str in (eq_dict or {}).items():
parsed = _parse_equation(eq_str)
if not parsed:
continue
lhs, rhs_str = parsed
try:
lhs_val = eval(lhs, {"__builtins__": None}, {})
rhs_val = eval(rhs_str, {"__builtins__": None}, {})
except Exception:
continue
# dynamic absolute tolerance from RHS formatting (e.g., 0.33 -> 0.005)
abs_tol = base_abs_tol
if honor_display_precision:
dyn = _abs_tol_from_display(rhs_str)
if dyn is not None:
abs_tol = max(abs_tol, dyn)
if not math.isclose(lhs_val, rhs_val, rel_tol=base_rel_tol, abs_tol=abs_tol):
correct_rhs_val = round(lhs_val, 6)
correct_rhs_str = f"{correct_rhs_val:.6f}".rstrip('0').rstrip('.')
return {
"error": True,
"line_key": key,
"line_text": sol_dict.get(key, "N/A"),
"original_flawed_calc": eq_str,
"sanitized_lhs": lhs,
"original_rhs": rhs_str,
"correct_rhs": correct_rhs_str,
}
return {"error": False}
def extract_json_from_response(response: str) -> dict:
"""
Recover equations from the extractor's output.
Strategy:
1) Try to parse a real JSON object (if present).
2) Parse relaxed key-value lines like 'L1: ...' or 'FA=...'.
3) Also fall back to linewise equations (e.g., '=24/2=12', '7*2=14') and
merge them as L1, L2, ... preserving order. Keep FA if present.
"""
out = {}
if not response or not isinstance(response, str):
return out
text = response.strip()
# --- 1) strict JSON block, if any ---
m = re.search(r'\{.*\}', text, flags=re.S)
if m:
try:
obj = json.loads(m.group(0))
if isinstance(obj, dict) and any(k.startswith("L") for k in obj):
return obj
elif isinstance(obj, dict):
out.update(obj) # keep FA etc., then continue
except Exception:
pass
# --- 2) relaxed key/value lines: Lk : value or FA = value ---
relaxed = {}
for ln in text.splitlines():
ln = ln.strip().strip(',')
if not ln:
continue
m = re.match(r'(?i)^(L\d+|FA)\s*[:=]\s*(.+?)\s*$', ln)
if m:
k = m.group(1).strip()
v = m.group(2).strip().rstrip(',')
relaxed[k] = v
out.update(relaxed)
# Count how many L-keys we already have
existing_L = sorted(
int(k[1:]) for k in out.keys()
if k.startswith("L") and k[1:].isdigit()
)
next_L = (max(existing_L) + 1) if existing_L else 1
# --- 3) linewise fallback: harvest bare equations and merge ---
def _looks_like_equation(s: str) -> str | None:
s = sanitize_equation_string(s or "").lstrip('=')
if '=' in s and any(ch.isdigit() for ch in s):
return s
return None
# set of existing equation strings to avoid duplicates
seen_vals = set(v for v in out.values() if isinstance(v, str))
for ln in text.splitlines():
ln = ln.strip().strip(',')
if not ln or re.match(r'(?i)^(L\d+|FA)\s*[:=]', ln):
# skip lines we already captured as relaxed pairs
continue
eq = _looks_like_equation(ln)
if eq and eq not in seen_vals:
out[f"L{next_L}"] = eq
seen_vals.add(eq)
next_L += 1
return out
# --- Prompts ---
EXTRACTOR_SYSTEM_PROMPT = \
"""[ROLE]
You are an expert at parsing mathematical solutions.
[TASK]
You are given a mathematical solution. Your task is to extract the calculation performed on each line and represent it as a simple equation.
**This is a literal transcription task. Follow these rules with extreme precision:**
- **RULE 1: Transcribe EXACTLY.** Do not correct mathematical errors. If a line implies `2+2=5`, your output for that line must be `2+2=5`.
- **RULE 2: Isolate the Equation.** Your output must contain ONLY the equation. Do not include any surrounding text, units (like `/hour`), or currency symbols (like `$`).
- **RULE 3: Use Standard Operators.** Always use `*` for multiplication. Never use `x`.
[RESPONSE FORMAT]
Your response must be ONLY a single, valid JSON object, adhering strictly to these rules:
For each line of the solution, create a key-value pair.
- The key should be the line identifier (e.g., "L1", "L2", "FA" for the final answer line).
- The value should be the extracted equation string (e.g., "10+5=15").
- If a line contains no calculation, the value must be an empty string.
"""
CLASSIFIER_SYSTEM_PROMPT = \
"""You are a mathematics tutor.
You will be given a math word problem and a solution written by a student.
Carefully analyze the problem and solution LINE-BY-LINE and determine whether there are any errors in the solution."""
# --- Example 1 ---
FEW_SHOT_EXAMPLE_1_SOLUTION = {
"L1": "2% of $90 is (2/100)*$90 = $1.8",
"L2": "2% of $60 is (2/100)*$60 = $1.2",
"L3": "The second transaction was reversed without the service charge so only a total of $90+$1.8+$1.2 = $39 was deducted from his account",
"L4": "He will have a balance of $400-$39 = $361",
"FA": "361"
}
FEW_SHOT_EXAMPLE_1_EQUATIONS = {
"L1": "(2/100)*90=1.8",
"L2": "(2/100)*60=1.2",
"L3": "90+1.8+1.2=39",
"L4": "400-39=361",
"FA": ""
}
# --- Example 2 ---
FEW_SHOT_EXAMPLE_2_SOLUTION = {
"L1": "She drinks 2 bottles a day and there are 24 bottles in a case so a case will last 24/2 = 12 days",
"L2": "She needs enough to last her 240 days and 1 case will last her 12 days so she needs 240/12 = 20 cases",
"L3": "Each case is on sale for $12.00 and she needs 20 cases so that's 12*20 = $240.00",
"FA": "240"
}
FEW_SHOT_EXAMPLE_2_EQUATIONS = {
"L1": "24/2=12",
"L2": "240/12=20",
"L3": "12*20=240.00",
"FA": ""
}
def create_extractor_messages(solution_json_str: str) -> list:
"""
Returns a list of dictionaries representing the conversation history for the prompt.
"""
# Start with the constant few-shot examples defined globally
messages = [
{"role": "user", "content": f"{EXTRACTOR_SYSTEM_PROMPT}\n\n### Solution:\n{json.dumps(FEW_SHOT_EXAMPLE_1_SOLUTION, indent=2)}"},
{"role": "assistant", "content": json.dumps(FEW_SHOT_EXAMPLE_1_EQUATIONS, indent=2)},
{"role": "user", "content": f"### Solution:\n{json.dumps(FEW_SHOT_EXAMPLE_2_SOLUTION, indent=2)}"},
{"role": "assistant", "content": json.dumps(FEW_SHOT_EXAMPLE_2_EQUATIONS, indent=2)},
]
# Add the final user query to the end of the conversation
final_user_prompt = f"### Solution:\n{solution_json_str}"
messages.append({"role": "user", "content": final_user_prompt})
return messages
gemma_model = None
gemma_tokenizer = None
classifier_model = None
classifier_tokenizer = None
def load_model():
"""Load your trained model here"""
global gemma_model, gemma_tokenizer, classifier_model, classifier_tokenizer, DEVICE
try:
device = DEVICE
# --- Model 1: Equation Extractor (Gemma-3 with Unsloth) ---
extractor_adapter_repo = "arvindsuresh-math/gemma-3-1b-equation-extractor-lora"
base_gemma_model = "unsloth/gemma-3-1b-it-unsloth-bnb-4bit"
gemma_model, gemma_tokenizer = FastModel.from_pretrained(
model_name=base_gemma_model,
max_seq_length=2048,
dtype=None,
load_in_4bit=True,
)
# --- Gemma tokenizer hygiene (fix the right-padding warning) ---
if gemma_tokenizer.pad_token is None:
gemma_tokenizer.pad_token = gemma_tokenizer.eos_token
gemma_tokenizer.padding_side = "left" # align last tokens across the batch
gemma_model = PeftModel.from_pretrained(gemma_model, extractor_adapter_repo)
# --- Model 2: Conceptual Error Classifier (Phi-4) ---
classifier_adapter_repo = "arvindsuresh-math/phi-4-error-binary-classifier"
base_phi_model = "microsoft/Phi-4-mini-instruct"
DTYPE = torch.bfloat16
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=DTYPE
)
classifier_backbone_base = AutoModelForCausalLM.from_pretrained(
base_phi_model,
quantization_config=quantization_config,
device_map="auto",
trust_remote_code=True,
)
classifier_tokenizer = AutoTokenizer.from_pretrained(
base_phi_model,
trust_remote_code=True
)
classifier_tokenizer.padding_side = "left"
if classifier_tokenizer.pad_token is None:
classifier_tokenizer.pad_token = classifier_tokenizer.eos_token
classifier_backbone_peft = PeftModel.from_pretrained(
classifier_backbone_base,
classifier_adapter_repo
)
classifier_model = GPTSequenceClassifier(classifier_backbone_peft, num_labels=2)
# Download and load the custom classifier head's state dictionary
classifier_head_path = hf_hub_download(repo_id=classifier_adapter_repo, filename="classifier_head.pth")
classifier_model.classifier.load_state_dict(torch.load(classifier_head_path, map_location=device))
classifier_model.to(device)
classifier_model = classifier_model.to(torch.bfloat16)
classifier_model.eval() # Set model to evaluation mode
logger.info("Model loaded successfully")
return "Model loaded successfully!"
except Exception as e:
logger.error(f"Error loading model: {e}")
return f"Error loading model: {e}"
def models_ready():
return all([gemma_model, gemma_tokenizer, classifier_model, classifier_tokenizer])
@spaces.GPU
def analyze_single(math_question: str, proposed_solution: str, debug: bool = False):
"""
Single (question, solution) classifier.
Stage 1: computational check via Gemma extraction + evaluator.
Stage 2: conceptual/correct check via Phi-4 classifier.
Returns: {"classification": "...", "confidence": "...", "explanation": "..."}
"""
global DEVICE
device = DEVICE
# -----------------------------
# STAGE 1: COMPUTATIONAL CHECK
# -----------------------------
# 1) Format and extract equations
solution_json_str = format_solution_into_json_str(proposed_solution)
solution_dict = json.loads(solution_json_str)
messages = create_extractor_messages(solution_json_str)
prompt = gemma_tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
inputs = gemma_tokenizer([prompt], return_tensors="pt").to(device)
outputs = gemma_model.generate(
**inputs,
max_new_tokens=300,
use_cache=True,
pad_token_id=gemma_tokenizer.pad_token_id,
do_sample=False,
temperature=0.0,
)
extracted_text = gemma_tokenizer.batch_decode(
outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True
)[0]
if debug:
print("\n[Gemma raw output]\n", extracted_text)
extracted_eq_dict = extract_json_from_response(extracted_text)
# 2) Keep only lines that actually contain digits in the original text
final_eq_to_eval = {
k: v
for k, v in extracted_eq_dict.items()
if any(ch.isdigit() for ch in solution_dict.get(k, ""))
}
if debug:
print("\n[Equations to evaluate]\n", json.dumps(final_eq_to_eval, indent=2))
# 3) Evaluate
computational_error = evaluate_equations(final_eq_to_eval, solution_dict)
if computational_error.get("error"):
lhs = computational_error["sanitized_lhs"]
rhs = computational_error["original_rhs"]
correct_rhs = computational_error["correct_rhs"]
line_txt = computational_error.get("line_text", "")
explanation = (
"A computational error was found.\n"
f'On line: "{line_txt}"\n'
f"The student wrote '{lhs} = {rhs}', but the correct result of '{lhs}' is {correct_rhs}."
)
return {
"classification": "Computational Error",
"confidence": "100%",
"explanation": explanation,
}
# --------------------------
# STAGE 2: CONCEPTUAL CHECK
# --------------------------
input_text = (
f"{CLASSIFIER_SYSTEM_PROMPT}\n\n"
f"### Problem:\n{math_question}\n\n"
f"### Answer:\n{proposed_solution}"
)
cls_inputs = classifier_tokenizer(
input_text, return_tensors="pt", truncation=True, max_length=512
).to(device)
with torch.no_grad():
logits = classifier_model(**cls_inputs)["logits"]
probs = torch.softmax(logits, dim=-1).squeeze()
is_correct_prob = float(probs[0])
is_flawed_prob = float(probs[1])
if debug:
print("\n[Phi-4 logits]", logits.to(torch.float32).cpu().numpy())
print("[Phi-4 probs] [Correct, Flawed]:", [is_correct_prob, is_flawed_prob])
if is_flawed_prob > 0.5:
return {
"classification": "Conceptual Error",
"confidence": f"{is_flawed_prob:.2%}",
"explanation": "Logic or setup appears to have a conceptual error.",
}
else:
return {
"classification": "Correct",
"confidence": f"{is_correct_prob:.2%}",
"explanation": "Solution appears correct.",
}
@spaces.GPU
def classify_solution(question: str, solution: str):
"""
Classify the math solution
Returns: (classification_label, confidence_score, explanation)
"""
if not question.strip() or not solution.strip():
return "Please fill in both fields", 0.0, ""
if not models_ready():
return "Models not loaded", 0.0, ""
try:
res = analyze_single(question, solution)
return res["classification"], res["confidence"], res["explanation"]
except Exception:
logger.exception("inference failed")
# Load model on startup
load_model()
# Create Gradio interface
with gr.Blocks(title="Math Solution Classifier", theme=gr.themes.Soft()) as app:
gr.Markdown("# 🧮 Math Solution Classifier")
gr.Markdown("Classify math solutions as correct, conceptually flawed, or computationally flawed.")
with gr.Row():
with gr.Column():
question_input = gr.Textbox(
label="Math Question",
placeholder="e.g., Solve for x: 2x + 5 = 13",
lines=3
)
solution_input = gr.Textbox(
label="Proposed Solution",
placeholder="e.g., 2x + 5 = 13\n2x = 13 - 5\n2x = 8\nx = 4",
lines=5
)
classify_btn = gr.Button("Classify Solution", variant="primary")
with gr.Column():
classification_output = gr.Textbox(label="Classification", interactive=False)
confidence_output = gr.Textbox(label="Confidence", interactive=False)
explanation_output = gr.Textbox(label="Explanation", interactive=False, lines=3)
# Examples
gr.Examples(
examples=[
[
"Solve for x: 2x + 5 = 13",
"2x + 5 = 13\n2x = 13 - 5\n2x = 8\nx = 4"
],
[
"John has three apples and Mary has seven, how many apples do they have together?",
"They have 7 + 3 = 11 apples." # This should be computationally flawed
],
[
"What is 15% of 200?",
"15% = 15/100 = 0.15\n0.15 × 200 = 30"
]
],
inputs=[question_input, solution_input]
)
classify_btn.click(
fn=classify_solution,
inputs=[question_input, solution_input],
outputs=[classification_output, confidence_output, explanation_output]
)
if __name__ == "__main__":
app.launch()