File size: 21,818 Bytes
e87cacb 4fb809e e87cacb 4fb809e e87cacb 1334832 d0f548c e87cacb 1334832 e87cacb 1334832 e87cacb 1334832 e87cacb 1334832 e87cacb 1334832 e87cacb 1334832 a1c981d e87cacb d6b181a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
# app.py - Gradio version (much simpler for HF Spaces)
import unsloth
from unsloth import FastModel
import gradio as gr
import logging
import spaces
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from peft import PeftModel
from huggingface_hub import hf_hub_download
import json
import re
import math
import time
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# --- compat shim for newer Phi-3/4 modeling files ---
import transformers as _tf
# Some HF model repos do: `from transformers.utils import LossKwargs`
# Older/newer lib versions may not re-export it, so we provide a fallback.
if not hasattr(_tf.utils, "LossKwargs"):
from typing import Dict, Any
class _LossKwargs(dict):
"""Duck-typed placeholder; used only for type hints / Unpack at runtime."""
pass
_tf.utils.LossKwargs = _LossKwargs
# -----------------------------------------------------
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables for model and tokenizer
label_mapping = {0: "✅ Correct", 1: "🤔 Conceptually Flawed", 2: "🔢 Computationally Flawed"}
# ===================================================================
# 1. DEFINE CUSTOM CLASSIFIER (Required for Phi-4)
# ===================================================================
class GPTSequenceClassifier(nn.Module):
def __init__(self, base_model, num_labels):
super().__init__()
self.base = base_model
hidden_size = base_model.config.hidden_size
self.classifier = nn.Linear(hidden_size, num_labels, bias=True)
self.num_labels = num_labels
def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
outputs = self.base(input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True, **kwargs)
last_hidden_state = outputs.hidden_states[-1]
pooled_output = last_hidden_state[:, -1, :]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
loss = nn.functional.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}
# --- Helper Functions ---
def format_solution_into_json_str(solution_text: str) -> str:
lines = [line.strip() for line in solution_text.strip().split('\n') if line.strip()]
final_answer = ""
if lines and "FINAL ANSWER:" in lines[-1].upper():
final_answer = lines[-1][len("FINAL ANSWER:"):].strip()
lines = lines[:-1]
solution_dict = {f"L{i+1}": line for i, line in enumerate(lines)}
solution_dict["FA"] = final_answer
return json.dumps(solution_dict, indent=2)
def sanitize_equation_string(expression: str) -> str:
if not isinstance(expression, str):
return ""
s = expression.strip()
# Normalize common symbols
s = s.replace('×', '*').replace('·', '*').replace('x', '*')
# Convert percentages like '12%' -> '(12/100)'
s = re.sub(r'(?<!\d)(\d+(?:\.\d+)?)\s*%', r'(\1/100)', s)
# Simple paren balancing trims (only when a single stray exists at an edge)
if s.count('(') > s.count(')') and s.startswith('('):
s = s[1:]
elif s.count(')') > s.count('(') and s.endswith(')'):
s = s[:-1]
# Drop units right after a slash: /hr, /dogs
s = re.sub(r'/([a-zA-Z]+)', '', s)
# Keep only numeric math tokens
s = re.sub(r'[^\d.()+\-*/=%]', '', s)
# Collapse repeated '=' (e.g., '==24/2=12' -> '=24/2=12')
s = re.sub(r'=+', '=', s)
return s
import re, math
def _parse_equation(eq_str: str):
s = sanitize_equation_string(eq_str or "")
s = s.lstrip('=') # handle lines like '=24/2=12'
if '=' not in s:
return None
if s.count('=') > 1:
pos = s.rfind('=')
lhs, rhs = s[:pos], s[pos+1:]
else:
lhs, rhs = s.split('=', 1)
lhs, rhs = lhs.strip(), rhs.strip()
if not lhs or not rhs:
return None
return lhs, rhs
def _abs_tol_from_display(rhs_str: str):
"""
If RHS is a single numeric literal like 0.33, use half-ULP at that precision.
e.g., '0.33' -> 0.5 * 10^-2 = 0.005
Otherwise return None and fall back to base tolerances.
"""
s = rhs_str.strip()
# allow optional parens and sign
m = re.fullmatch(r'\(?\s*[-+]?\d+(?:\.(\d+))?\s*\)?', s)
if not m:
return None
frac = m.group(1) or ""
d = len(frac)
return 0.5 * (10 ** (-d)) if d > 0 else 0.5 # if integer shown, allow ±0.5
def evaluate_equations(eq_dict: dict, sol_dict: dict,
base_rel_tol: float = 1e-6,
base_abs_tol: float = 1e-9,
honor_display_precision: bool = True):
"""
Evaluates extracted equations. Accepts rounded RHS values based on displayed precision.
"""
for key, eq_str in (eq_dict or {}).items():
parsed = _parse_equation(eq_str)
if not parsed:
continue
lhs, rhs_str = parsed
try:
lhs_val = eval(lhs, {"__builtins__": None}, {})
rhs_val = eval(rhs_str, {"__builtins__": None}, {})
except Exception:
continue
# dynamic absolute tolerance from RHS formatting (e.g., 0.33 -> 0.005)
abs_tol = base_abs_tol
if honor_display_precision:
dyn = _abs_tol_from_display(rhs_str)
if dyn is not None:
abs_tol = max(abs_tol, dyn)
if not math.isclose(lhs_val, rhs_val, rel_tol=base_rel_tol, abs_tol=abs_tol):
correct_rhs_val = round(lhs_val, 6)
correct_rhs_str = f"{correct_rhs_val:.6f}".rstrip('0').rstrip('.')
return {
"error": True,
"line_key": key,
"line_text": sol_dict.get(key, "N/A"),
"original_flawed_calc": eq_str,
"sanitized_lhs": lhs,
"original_rhs": rhs_str,
"correct_rhs": correct_rhs_str,
}
return {"error": False}
def extract_json_from_response(response: str) -> dict:
"""
Recover equations from the extractor's output.
Strategy:
1) Try to parse a real JSON object (if present).
2) Parse relaxed key-value lines like 'L1: ...' or 'FA=...'.
3) Also fall back to linewise equations (e.g., '=24/2=12', '7*2=14') and
merge them as L1, L2, ... preserving order. Keep FA if present.
"""
out = {}
if not response or not isinstance(response, str):
return out
text = response.strip()
# --- 1) strict JSON block, if any ---
m = re.search(r'\{.*\}', text, flags=re.S)
if m:
try:
obj = json.loads(m.group(0))
if isinstance(obj, dict) and any(k.startswith("L") for k in obj):
return obj
elif isinstance(obj, dict):
out.update(obj) # keep FA etc., then continue
except Exception:
pass
# --- 2) relaxed key/value lines: Lk : value or FA = value ---
relaxed = {}
for ln in text.splitlines():
ln = ln.strip().strip(',')
if not ln:
continue
m = re.match(r'(?i)^(L\d+|FA)\s*[:=]\s*(.+?)\s*$', ln)
if m:
k = m.group(1).strip()
v = m.group(2).strip().rstrip(',')
relaxed[k] = v
out.update(relaxed)
# Count how many L-keys we already have
existing_L = sorted(
int(k[1:]) for k in out.keys()
if k.startswith("L") and k[1:].isdigit()
)
next_L = (max(existing_L) + 1) if existing_L else 1
# --- 3) linewise fallback: harvest bare equations and merge ---
def _looks_like_equation(s: str) -> str | None:
s = sanitize_equation_string(s or "").lstrip('=')
if '=' in s and any(ch.isdigit() for ch in s):
return s
return None
# set of existing equation strings to avoid duplicates
seen_vals = set(v for v in out.values() if isinstance(v, str))
for ln in text.splitlines():
ln = ln.strip().strip(',')
if not ln or re.match(r'(?i)^(L\d+|FA)\s*[:=]', ln):
# skip lines we already captured as relaxed pairs
continue
eq = _looks_like_equation(ln)
if eq and eq not in seen_vals:
out[f"L{next_L}"] = eq
seen_vals.add(eq)
next_L += 1
return out
# --- Prompts ---
EXTRACTOR_SYSTEM_PROMPT = \
"""[ROLE]
You are an expert at parsing mathematical solutions.
[TASK]
You are given a mathematical solution. Your task is to extract the calculation performed on each line and represent it as a simple equation.
**This is a literal transcription task. Follow these rules with extreme precision:**
- **RULE 1: Transcribe EXACTLY.** Do not correct mathematical errors. If a line implies `2+2=5`, your output for that line must be `2+2=5`.
- **RULE 2: Isolate the Equation.** Your output must contain ONLY the equation. Do not include any surrounding text, units (like `/hour`), or currency symbols (like `$`).
- **RULE 3: Use Standard Operators.** Always use `*` for multiplication. Never use `x`.
[RESPONSE FORMAT]
Your response must be ONLY a single, valid JSON object, adhering strictly to these rules:
For each line of the solution, create a key-value pair.
- The key should be the line identifier (e.g., "L1", "L2", "FA" for the final answer line).
- The value should be the extracted equation string (e.g., "10+5=15").
- If a line contains no calculation, the value must be an empty string.
"""
CLASSIFIER_SYSTEM_PROMPT = \
"""You are a mathematics tutor.
You will be given a math word problem and a solution written by a student.
Carefully analyze the problem and solution LINE-BY-LINE and determine whether there are any errors in the solution."""
# --- Example 1 ---
FEW_SHOT_EXAMPLE_1_SOLUTION = {
"L1": "2% of $90 is (2/100)*$90 = $1.8",
"L2": "2% of $60 is (2/100)*$60 = $1.2",
"L3": "The second transaction was reversed without the service charge so only a total of $90+$1.8+$1.2 = $39 was deducted from his account",
"L4": "He will have a balance of $400-$39 = $361",
"FA": "361"
}
FEW_SHOT_EXAMPLE_1_EQUATIONS = {
"L1": "(2/100)*90=1.8",
"L2": "(2/100)*60=1.2",
"L3": "90+1.8+1.2=39",
"L4": "400-39=361",
"FA": ""
}
# --- Example 2 ---
FEW_SHOT_EXAMPLE_2_SOLUTION = {
"L1": "She drinks 2 bottles a day and there are 24 bottles in a case so a case will last 24/2 = 12 days",
"L2": "She needs enough to last her 240 days and 1 case will last her 12 days so she needs 240/12 = 20 cases",
"L3": "Each case is on sale for $12.00 and she needs 20 cases so that's 12*20 = $240.00",
"FA": "240"
}
FEW_SHOT_EXAMPLE_2_EQUATIONS = {
"L1": "24/2=12",
"L2": "240/12=20",
"L3": "12*20=240.00",
"FA": ""
}
def create_extractor_messages(solution_json_str: str) -> list:
"""
Returns a list of dictionaries representing the conversation history for the prompt.
"""
# Start with the constant few-shot examples defined globally
messages = [
{"role": "user", "content": f"{EXTRACTOR_SYSTEM_PROMPT}\n\n### Solution:\n{json.dumps(FEW_SHOT_EXAMPLE_1_SOLUTION, indent=2)}"},
{"role": "assistant", "content": json.dumps(FEW_SHOT_EXAMPLE_1_EQUATIONS, indent=2)},
{"role": "user", "content": f"### Solution:\n{json.dumps(FEW_SHOT_EXAMPLE_2_SOLUTION, indent=2)}"},
{"role": "assistant", "content": json.dumps(FEW_SHOT_EXAMPLE_2_EQUATIONS, indent=2)},
]
# Add the final user query to the end of the conversation
final_user_prompt = f"### Solution:\n{solution_json_str}"
messages.append({"role": "user", "content": final_user_prompt})
return messages
gemma_model = None
gemma_tokenizer = None
classifier_model = None
classifier_tokenizer = None
def load_model():
"""Load your trained model here"""
global gemma_model, gemma_tokenizer, classifier_model, classifier_tokenizer, DEVICE
try:
device = DEVICE
# --- Model 1: Equation Extractor (Gemma-3 with Unsloth) ---
extractor_adapter_repo = "arvindsuresh-math/gemma-3-1b-equation-extractor-lora"
base_gemma_model = "unsloth/gemma-3-1b-it-unsloth-bnb-4bit"
gemma_model, gemma_tokenizer = FastModel.from_pretrained(
model_name=base_gemma_model,
max_seq_length=2048,
dtype=None,
load_in_4bit=True,
)
# --- Gemma tokenizer hygiene (fix the right-padding warning) ---
if gemma_tokenizer.pad_token is None:
gemma_tokenizer.pad_token = gemma_tokenizer.eos_token
gemma_tokenizer.padding_side = "left" # align last tokens across the batch
gemma_model = PeftModel.from_pretrained(gemma_model, extractor_adapter_repo)
# --- Model 2: Conceptual Error Classifier (Phi-4) ---
classifier_adapter_repo = "arvindsuresh-math/phi-4-error-binary-classifier"
base_phi_model = "microsoft/Phi-4-mini-instruct"
DTYPE = torch.bfloat16
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=DTYPE
)
classifier_backbone_base = AutoModelForCausalLM.from_pretrained(
base_phi_model,
quantization_config=quantization_config,
device_map="auto",
trust_remote_code=True,
)
classifier_tokenizer = AutoTokenizer.from_pretrained(
base_phi_model,
trust_remote_code=True
)
classifier_tokenizer.padding_side = "left"
if classifier_tokenizer.pad_token is None:
classifier_tokenizer.pad_token = classifier_tokenizer.eos_token
classifier_backbone_peft = PeftModel.from_pretrained(
classifier_backbone_base,
classifier_adapter_repo
)
classifier_model = GPTSequenceClassifier(classifier_backbone_peft, num_labels=2)
# Download and load the custom classifier head's state dictionary
classifier_head_path = hf_hub_download(repo_id=classifier_adapter_repo, filename="classifier_head.pth")
classifier_model.classifier.load_state_dict(torch.load(classifier_head_path, map_location=device))
classifier_model.to(device)
classifier_model = classifier_model.to(torch.bfloat16)
classifier_model.eval() # Set model to evaluation mode
logger.info("Model loaded successfully")
return "Model loaded successfully!"
except Exception as e:
logger.error(f"Error loading model: {e}")
return f"Error loading model: {e}"
def models_ready():
return all([gemma_model, gemma_tokenizer, classifier_model, classifier_tokenizer])
@spaces.GPU
def analyze_single(math_question: str, proposed_solution: str, debug: bool = False):
"""
Single (question, solution) classifier.
Stage 1: computational check via Gemma extraction + evaluator.
Stage 2: conceptual/correct check via Phi-4 classifier.
Returns: {"classification": "...", "confidence": "...", "explanation": "..."}
"""
global DEVICE
device = DEVICE
# -----------------------------
# STAGE 1: COMPUTATIONAL CHECK
# -----------------------------
# 1) Format and extract equations
solution_json_str = format_solution_into_json_str(proposed_solution)
solution_dict = json.loads(solution_json_str)
messages = create_extractor_messages(solution_json_str)
prompt = gemma_tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
inputs = gemma_tokenizer([prompt], return_tensors="pt").to(device)
outputs = gemma_model.generate(
**inputs,
max_new_tokens=300,
use_cache=True,
pad_token_id=gemma_tokenizer.pad_token_id,
do_sample=False,
temperature=0.0,
)
extracted_text = gemma_tokenizer.batch_decode(
outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True
)[0]
if debug:
print("\n[Gemma raw output]\n", extracted_text)
extracted_eq_dict = extract_json_from_response(extracted_text)
# 2) Keep only lines that actually contain digits in the original text
final_eq_to_eval = {
k: v
for k, v in extracted_eq_dict.items()
if any(ch.isdigit() for ch in solution_dict.get(k, ""))
}
if debug:
print("\n[Equations to evaluate]\n", json.dumps(final_eq_to_eval, indent=2))
# 3) Evaluate
computational_error = evaluate_equations(final_eq_to_eval, solution_dict)
if computational_error.get("error"):
lhs = computational_error["sanitized_lhs"]
rhs = computational_error["original_rhs"]
correct_rhs = computational_error["correct_rhs"]
line_txt = computational_error.get("line_text", "")
explanation = (
"A computational error was found.\n"
f'On line: "{line_txt}"\n'
f"The student wrote '{lhs} = {rhs}', but the correct result of '{lhs}' is {correct_rhs}."
)
return {
"classification": "Computational Error",
"confidence": "100%",
"explanation": explanation,
}
# --------------------------
# STAGE 2: CONCEPTUAL CHECK
# --------------------------
input_text = (
f"{CLASSIFIER_SYSTEM_PROMPT}\n\n"
f"### Problem:\n{math_question}\n\n"
f"### Answer:\n{proposed_solution}"
)
cls_inputs = classifier_tokenizer(
input_text, return_tensors="pt", truncation=True, max_length=512
).to(device)
with torch.no_grad():
logits = classifier_model(**cls_inputs)["logits"]
probs = torch.softmax(logits, dim=-1).squeeze()
is_correct_prob = float(probs[0])
is_flawed_prob = float(probs[1])
if debug:
print("\n[Phi-4 logits]", logits.to(torch.float32).cpu().numpy())
print("[Phi-4 probs] [Correct, Flawed]:", [is_correct_prob, is_flawed_prob])
if is_flawed_prob > 0.5:
return {
"classification": "Conceptual Error",
"confidence": f"{is_flawed_prob:.2%}",
"explanation": "Logic or setup appears to have a conceptual error.",
}
else:
return {
"classification": "Correct",
"confidence": f"{is_correct_prob:.2%}",
"explanation": "Solution appears correct.",
}
@spaces.GPU
def classify_solution(question: str, solution: str):
"""
Classify the math solution
Returns: (classification_label, confidence_score, explanation)
"""
if not question.strip() or not solution.strip():
return "Please fill in both fields", 0.0, ""
if not models_ready():
return "Models not loaded", 0.0, ""
try:
res = analyze_single(question, solution)
return res["classification"], res["confidence"], res["explanation"]
except Exception:
logger.exception("inference failed")
# Load model on startup
load_model()
# Create Gradio interface
with gr.Blocks(title="Math Solution Classifier", theme=gr.themes.Soft()) as app:
gr.Markdown("# 🧮 Math Solution Classifier")
gr.Markdown("Classify math solutions as correct, conceptually flawed, or computationally flawed.")
with gr.Row():
with gr.Column():
question_input = gr.Textbox(
label="Math Question",
placeholder="e.g., Solve for x: 2x + 5 = 13",
lines=3
)
solution_input = gr.Textbox(
label="Proposed Solution",
placeholder="e.g., 2x + 5 = 13\n2x = 13 - 5\n2x = 8\nx = 4",
lines=5
)
classify_btn = gr.Button("Classify Solution", variant="primary")
with gr.Column():
classification_output = gr.Textbox(label="Classification", interactive=False)
confidence_output = gr.Textbox(label="Confidence", interactive=False)
explanation_output = gr.Textbox(label="Explanation", interactive=False, lines=3)
# Examples
gr.Examples(
examples=[
[
"Solve for x: 2x + 5 = 13",
"2x + 5 = 13\n2x = 13 - 5\n2x = 8\nx = 4"
],
[
"John has three apples and Mary has seven, how many apples do they have together?",
"They have 7 + 3 = 11 apples." # This should be computationally flawed
],
[
"What is 15% of 200?",
"15% = 15/100 = 0.15\n0.15 × 200 = 30"
]
],
inputs=[question_input, solution_input]
)
classify_btn.click(
fn=classify_solution,
inputs=[question_input, solution_input],
outputs=[classification_output, confidence_output, explanation_output]
)
if __name__ == "__main__":
app.launch() |