File size: 16,850 Bytes
e87cacb
4fb809e
 
e87cacb
 
 
 
 
 
 
 
 
4fb809e
e87cacb
 
 
 
 
 
 
1334832
 
cde06dc
 
d0f548c
 
e87cacb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76ebeac
 
 
 
e87cacb
76ebeac
 
 
 
e87cacb
 
76ebeac
 
 
e87cacb
 
 
76ebeac
 
 
 
 
e87cacb
76ebeac
 
 
 
 
e87cacb
76ebeac
e87cacb
76ebeac
 
e87cacb
76ebeac
 
e87cacb
 
76ebeac
e87cacb
76ebeac
 
e87cacb
76ebeac
e87cacb
76ebeac
 
e87cacb
76ebeac
 
e87cacb
76ebeac
 
 
 
 
 
 
 
 
 
 
 
 
 
e87cacb
 
 
76ebeac
e87cacb
 
 
 
 
76ebeac
e87cacb
76ebeac
 
e87cacb
 
76ebeac
 
e87cacb
76ebeac
 
e87cacb
 
 
 
 
 
76ebeac
e87cacb
 
 
 
 
 
 
 
3609ee0
e87cacb
 
1334832
e87cacb
 
76ebeac
e87cacb
 
 
 
76ebeac
e87cacb
 
 
 
 
 
 
 
 
76ebeac
e87cacb
 
 
76ebeac
 
e87cacb
 
 
76ebeac
 
 
e87cacb
 
 
76ebeac
 
e87cacb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76ebeac
e87cacb
76ebeac
e87cacb
 
 
 
9251b67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76ebeac
 
 
 
 
e87cacb
76ebeac
e87cacb
76ebeac
e87cacb
3609ee0
 
76ebeac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e87cacb
76ebeac
 
 
 
 
 
 
3609ee0
 
76ebeac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e87cacb
76ebeac
 
 
e87cacb
 
76ebeac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e87cacb
 
 
 
 
 
 
 
 
 
1334832
 
e87cacb
 
76ebeac
e87cacb
76ebeac
a1c981d
 
 
e87cacb
 
 
9251b67
e87cacb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3609ee0
e87cacb
 
 
d6b181a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
# app.py - Gradio version (much simpler for HF Spaces)
import unsloth
from unsloth import FastModel

import gradio as gr
import logging
import spaces

import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig


from peft import PeftModel
from huggingface_hub import hf_hub_download

import json
import re
import math

DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")





# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Global variables for model and tokenizer
label_mapping = {0: "✅ Correct", 1: "🤔 Conceptually Flawed", 2: "🔢 Computationally Flawed"}


# ===================================================================
# 1. DEFINE CUSTOM CLASSIFIER (Required for Phi-4)
# ===================================================================
class GPTSequenceClassifier(nn.Module):
    def __init__(self, base_model, num_labels):
        super().__init__()
        self.base = base_model
        hidden_size = base_model.config.hidden_size
        self.classifier = nn.Linear(hidden_size, num_labels, bias=True)
        self.num_labels = num_labels

    def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
        outputs = self.base(input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True, **kwargs)
        last_hidden_state = outputs.hidden_states[-1]
        pooled_output = last_hidden_state[:, -1, :]
        logits = self.classifier(pooled_output)
        loss = None
        if labels is not None:
            loss = nn.functional.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
        return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}
        
        
# ===================================================================
# 3. HELPERS
# ===================================================================

# --- Helper Functions ---
def extract_equation_from_response(response: str) -> str | None:
    """Extracts content from between <eq> and </eq> tags."""
    match = re.search(r'<eq>(.*?)</eq>', response, re.DOTALL)
    return match.group(1) if match else None

def sanitize_equation_string(expression: str) -> str:
    """

    Enhanced version with your requested simplified parenthesis logic.

    """
    if not isinstance(expression, str):
        return ""

    # Your requested parenthesis logic:
    if expression.count('(') > expression.count(')') and expression.startswith('('):
        expression = expression[1:]
    elif expression.count(')') > expression.count('(') and expression.endswith(')'):
        expression = expression[:-1]

    sanitized = expression.replace(' ', '')
    sanitized = sanitized.replace('x', '*').replace('×', '*')
    sanitized = re.sub(r'/([a-zA-Z]+)', '', sanitized)
    sanitized = re.sub(r'[^\d.()+\-*/=]', '', sanitized)
    return sanitized

def evaluate_equations(eq_dict: dict, sol_dict: dict):
    """

    Evaluates extracted equations and returns a more detailed dictionary for

    building clearer explanations.

    """
    for key, eq_str in eq_dict.items():
        if not eq_str or "=" not in eq_str:
            continue
        try:
            sanitized_eq = sanitize_equation_string(eq_str)

            if not sanitized_eq or "=" not in sanitized_eq:
                continue

            lhs, rhs_str = sanitized_eq.split('=', 1)

            if not lhs or not rhs_str:
                continue

            lhs_val = eval(lhs, {"__builtins__": None}, {})
            rhs_val = eval(rhs_str, {"__builtins__": None}, {})

            if not math.isclose(lhs_val, rhs_val, rel_tol=1e-2):
                correct_rhs_val = round(lhs_val, 4)
                correct_rhs_str = f"{correct_rhs_val:.4f}".rstrip('0').rstrip('.')

                # Return a more detailed dictionary for better explanations
                return {
                    "error": True,
                    "line_key": key,
                    "line_text": sol_dict.get(key, "N/A"),
                    "original_flawed_calc": eq_str, # The raw model output
                    "sanitized_lhs": lhs,           # The clean left side
                    "original_rhs": rhs_str,        # The clean right side
                    "correct_rhs": correct_rhs_str, # The correct right side
                }
        except Exception:
            continue

    return {"error": False}

# --- Prompts ---
EXTRACTOR_SYSTEM_PROMPT = \
"""[ROLE]

You are an expert at parsing mathematical solutions.



[TASK]

You are given a single line from a mathematical solution. Your task is to extract the calculation from this line.



**This is a literal transcription task. Follow these rules with extreme precision:**

- **RULE 1: Transcribe EXACTLY.** Do not correct mathematical errors. If a line implies `2+2=5`, your output for that line must be `2+2=5`.

- **RULE 2: Isolate the Equation.** Your output must contain ONLY the equation, with no surrounding text, units, or currency symbols. Always use `*` for multiplication.



[RESPONSE FORMAT]

Your response must ONLY contain the extracted equation, wrapped in <eq> and </eq> tags.

If the line contains no calculation, respond with empty tags: <eq></eq>.

"""
CLASSIFIER_SYSTEM_PROMPT = \
"""You are a mathematics tutor.

You will be given a math word problem and a solution written by a student.

Carefully analyze the problem and solution LINE-BY-LINE and determine whether there are any errors in the solution."""


        
gemma_model = None
gemma_tokenizer = None
classifier_model = None
classifier_tokenizer = None

def load_model():
    """Load your trained model here"""
    global gemma_model, gemma_tokenizer, classifier_model, classifier_tokenizer
    
    try:
        device = DEVICE

        # --- Model 1: Equation Extractor (Gemma-3 with Unsloth) ---
        extractor_adapter_repo = "arvindsuresh-math/gemma-3-1b-equation-line-extractor-aug-10"
        base_gemma_model = "unsloth/gemma-3-1b-it-unsloth-bnb-4bit"

        gemma_model, gemma_tokenizer = FastModel.from_pretrained(
            model_name=base_gemma_model,
            max_seq_length=350,
            dtype=None,
            load_in_4bit=True,
        )
        gemma_model = PeftModel.from_pretrained(gemma_model, extractor_adapter_repo)

        # --- Model 2: Conceptual Error Classifier (Phi-4) ---
        classifier_adapter_repo = "arvindsuresh-math/phi-4-error-binary-classifier"
        base_phi_model = "microsoft/Phi-4-mini-instruct"

        DTYPE = torch.float16
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=DTYPE
            )
        classifier_backbone_base = AutoModelForCausalLM.from_pretrained(
            base_phi_model,
            quantization_config=quantization_config,
            device_map="auto",
            trust_remote_code=True,
            )

        classifier_tokenizer = AutoTokenizer.from_pretrained(
            base_phi_model,
            trust_remote_code=True
            )
        classifier_tokenizer.padding_side = "left"
        if classifier_tokenizer.pad_token is None:
            classifier_tokenizer.pad_token = classifier_tokenizer.eos_token

        classifier_backbone_peft = PeftModel.from_pretrained(
            classifier_backbone_base,
            classifier_adapter_repo
            )
        classifier_model = GPTSequenceClassifier(classifier_backbone_peft, num_labels=2)

        # Download and load the custom classifier head's state dictionary
        classifier_head_path = hf_hub_download(repo_id=classifier_adapter_repo, filename="classifier_head.pth")
        classifier_model.classifier.load_state_dict(torch.load(classifier_head_path, map_location=device))

        classifier_model.to(device)
        classifier_model = classifier_model.to(torch.float16)

        classifier_model.eval() # Set model to evaluation mode
        
    except Exception as e:
        logger.error(f"Error loading model: {e}")
        return f"Error loading model: {e}"
        
def models_ready() -> bool:
    ready = all(x is not None for x in [
        gemma_model, gemma_tokenizer, classifier_model, classifier_tokenizer
    ])
    if not ready:
        logger.warning(
            "models_ready=False  gemma_model=%s gemma_tok=%s phi_model=%s phi_tok=%s",
            type(gemma_model).__name__ if gemma_model is not None else None,
            type(gemma_tokenizer).__name__ if gemma_tokenizer is not None else None,
            type(classifier_model).__name__ if classifier_model is not None else None,
            type(classifier_tokenizer).__name__ if classifier_tokenizer is not None else None,
        )
    return ready

# Load model on startup
msg = load_model()
logger.info("load_model(): %s", msg)
    
    
# ===================================================================
# 4. PIPELINE COMPONENTS
# ===================================================================

def run_conceptual_check(question: str, solution: str, model, tokenizer) -> dict:
    """

    STAGE 1: Runs the Phi-4 classifier with memory optimizations.

    """
    device = DEVICE
    
    input_text = f"{CLASSIFIER_SYSTEM_PROMPT}\n\n### Problem:\n{question}\n\n### Answer:\n{solution}"
    inputs = tokenizer(
        input_text,
        return_tensors="pt",
        truncation=True,
        max_length=512).to(device)

    # Use inference_mode and disable cache for better performance and memory management
    with torch.inference_mode():
        outputs = model(**inputs, use_cache=False)

        # Explicitly cast logits to float32 for stable downstream processing
        logits = outputs["logits"].to(torch.float32)
        probs = torch.softmax(logits, dim=-1).squeeze().tolist()

    is_flawed_prob = probs[1]
    prediction = "flawed" if is_flawed_prob > 0.5 else "correct"

    return {
        "prediction": prediction,
        "probabilities": {"correct": probs[0], "flawed": probs[1]}
    }


def run_computational_check(solution: str, model, tokenizer, batch_size: int = 32) -> dict:
    """

    STAGE 2: Splits a solution into lines and performs a batched computational check.

    (Corrected to handle PEMDAS/parentheses)

    """
    device = DEVICE
    
    lines = [line.strip() for line in solution.strip().split('\n') if line.strip() and "FINAL ANSWER:" not in line.upper()]
    if not lines:
        return {"error": False}

    # Create a batch of prompts, one for each line
    prompts = []
    for line in lines:
        messages = [{"role": "user", "content": f"{EXTRACTOR_SYSTEM_PROMPT}\n\n### Solution Line:\n{line}"}]
        prompts.append(tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True))

    # Run batched inference
    tokenizer.padding_side = "left"
    inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(device)
    tokenizer.padding_side = "left"
    outputs = model.generate(**inputs, max_new_tokens=64, use_cache=True, pad_token_id=tokenizer.pad_token_id)
    tokenizer.padding_side = "left"
    decoded_outputs = tokenizer.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)

    # Evaluate each line's extracted equation
    for i, raw_output in enumerate(decoded_outputs):
        equation = extract_equation_from_response(raw_output)
        if not equation or "=" not in equation:
            continue

        try:
            # Sanitize the full equation string, preserving parentheses
            sanitized_eq = sanitize_equation_string(equation)
            if "=" not in sanitized_eq:
                continue

            lhs, rhs_str = sanitized_eq.split('=', 1)

            # Evaluate the sanitized LHS, which now correctly includes parentheses
            lhs_val = eval(lhs, {"__builtins__": None}, {})

            # Compare with the RHS
            if not math.isclose(lhs_val, float(rhs_str), rel_tol=1e-2):
                return {
                    "error": True,
                    "line_text": lines[i],
                    "correct_calc": f"{lhs} = {round(lhs_val, 4)}"
                }
        except Exception:
            continue # Skip lines where evaluation fails

    return {"error": False}


def analyze_solution(question: str, solution: str):
    """

    Main orchestrator that runs the full pipeline and generates the final explanation.

    """
    # STAGE 1: Conceptual Check (Fast)
    conceptual_result = run_conceptual_check(question, solution, classifier_model, classifier_tokenizer)
    confidence = conceptual_result['probabilities'][conceptual_result['prediction']]

    # STAGE 2: Computational Check (Slower, Batched)
    computational_result = run_computational_check(solution, gemma_model, gemma_tokenizer)

    # FINAL VERDICT LOGIC
    if computational_result["error"]:
        classification = "computational_error"
        explanation = (
            f"A calculation error was found.\n"
            f"On the line: \"{computational_result['line_text']}\"\n"
            f"The correct calculation should be: {computational_result['correct_calc']}"
        )
    else:
        # If calculations are fine, the final verdict is the conceptual one.
        if conceptual_result['prediction'] == 'correct':
            classification = 'correct'
            explanation = "All calculations are correct and the overall logic appears to be sound."
        else: # This now correctly corresponds to 'flawed'
            classification = 'conceptual_error' # Produce the user-facing label
            explanation = "All calculations are correct, but there appears to be a conceptual error in the logic or setup of the solution."
    final_verdict = {
        "classification": classification,
        "explanation": explanation
    }

    return final_verdict    
     



def classify_solution(question: str, solution: str):
    """

    Classify the math solution

    Returns: (classification_label, confidence_score, explanation)

    """
    if not question.strip() or not solution.strip():
        return "Please fill in both fields", 0.0, ""
    
    if not models_ready():
        return "Models not loaded", 0.0, ""
    
    try:
        res = analyze_solution(question, solution)
        
        return res["classification"], res["explanation"]
    except Exception:
        logger.exception("inference failed")
        
        
        



# Create Gradio interface
with gr.Blocks(title="Math Solution Classifier", theme=gr.themes.Soft()) as app:
    gr.Markdown("# 🧮 Math Solution Classifier")
    gr.Markdown("Classify math solutions as correct, conceptually flawed, or computationally flawed.")
    
    with gr.Row():
        with gr.Column():
            question_input = gr.Textbox(
                label="Math Question",
                placeholder="e.g., Solve for x: 2x + 5 = 13",
                lines=3
            )
            
            solution_input = gr.Textbox(
                label="Proposed Solution", 
                placeholder="e.g., 2x + 5 = 13\n2x = 13 - 5\n2x = 8\nx = 4",
                lines=5
            )
            
            classify_btn = gr.Button("Classify Solution", variant="primary")
        
        with gr.Column():
            classification_output = gr.Textbox(label="Classification", interactive=False)
            confidence_output = gr.Textbox(label="Confidence", interactive=False)
            explanation_output = gr.Textbox(label="Explanation", interactive=False, lines=3)
    
    # Examples
    gr.Examples(
        examples=[
            [
                "Solve for x: 2x + 5 = 13",
                "2x + 5 = 13\n2x = 13 - 5\n2x = 8\nx = 4"
            ],
            [
                "John has three apples and Mary has seven, how many apples do they have together?", 
                "They have 7 + 3 = 11 apples."  # This should be computationally flawed
            ],
            [
                "What is 15% of 200?",
                "15% = 15/100 = 0.15\n0.15 × 200 = 30"
            ]
        ],
        inputs=[question_input, solution_input]
    )
    
    classify_btn.click(
        fn=classify_solution,
        inputs=[question_input, solution_input],
        outputs=[classification_output, explanation_output]
    )

if __name__ == "__main__":
    app.launch()