Upload 2 files
Browse files- app.py +183 -352
- requirements.txt +5 -1
app.py
CHANGED
@@ -17,7 +17,6 @@ from huggingface_hub import hf_hub_download
|
|
17 |
import json
|
18 |
import re
|
19 |
import math
|
20 |
-
import time
|
21 |
|
22 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
|
@@ -65,271 +64,99 @@ class GPTSequenceClassifier(nn.Module):
|
|
65 |
loss = nn.functional.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
|
66 |
return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}
|
67 |
|
68 |
-
|
69 |
-
|
70 |
|
|
|
|
|
|
|
|
|
71 |
# --- Helper Functions ---
|
72 |
-
def
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
final_answer = lines[-1][len("FINAL ANSWER:"):].strip()
|
77 |
-
lines = lines[:-1]
|
78 |
-
solution_dict = {f"L{i+1}": line for i, line in enumerate(lines)}
|
79 |
-
solution_dict["FA"] = final_answer
|
80 |
-
return json.dumps(solution_dict, indent=2)
|
81 |
|
82 |
def sanitize_equation_string(expression: str) -> str:
|
|
|
|
|
|
|
83 |
if not isinstance(expression, str):
|
84 |
return ""
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
# Convert percentages like '12%' -> '(12/100)'
|
92 |
-
s = re.sub(r'(?<!\d)(\d+(?:\.\d+)?)\s*%', r'(\1/100)', s)
|
93 |
-
|
94 |
-
# Simple paren balancing trims (only when a single stray exists at an edge)
|
95 |
-
if s.count('(') > s.count(')') and s.startswith('('):
|
96 |
-
s = s[1:]
|
97 |
-
elif s.count(')') > s.count('(') and s.endswith(')'):
|
98 |
-
s = s[:-1]
|
99 |
-
|
100 |
-
# Drop units right after a slash: /hr, /dogs
|
101 |
-
s = re.sub(r'/([a-zA-Z]+)', '', s)
|
102 |
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
105 |
|
106 |
-
|
107 |
-
s = re.sub(r'=+', '=', s)
|
108 |
-
|
109 |
-
return s
|
110 |
-
|
111 |
-
import re, math
|
112 |
-
|
113 |
-
def _parse_equation(eq_str: str):
|
114 |
-
s = sanitize_equation_string(eq_str or "")
|
115 |
-
s = s.lstrip('=') # handle lines like '=24/2=12'
|
116 |
-
if '=' not in s:
|
117 |
-
return None
|
118 |
-
if s.count('=') > 1:
|
119 |
-
pos = s.rfind('=')
|
120 |
-
lhs, rhs = s[:pos], s[pos+1:]
|
121 |
-
else:
|
122 |
-
lhs, rhs = s.split('=', 1)
|
123 |
-
lhs, rhs = lhs.strip(), rhs.strip()
|
124 |
-
if not lhs or not rhs:
|
125 |
-
return None
|
126 |
-
return lhs, rhs
|
127 |
-
|
128 |
-
def _abs_tol_from_display(rhs_str: str):
|
129 |
-
"""
|
130 |
-
If RHS is a single numeric literal like 0.33, use half-ULP at that precision.
|
131 |
-
e.g., '0.33' -> 0.5 * 10^-2 = 0.005
|
132 |
-
Otherwise return None and fall back to base tolerances.
|
133 |
"""
|
134 |
-
|
135 |
-
|
136 |
-
m = re.fullmatch(r'\(?\s*[-+]?\d+(?:\.(\d+))?\s*\)?', s)
|
137 |
-
if not m:
|
138 |
-
return None
|
139 |
-
frac = m.group(1) or ""
|
140 |
-
d = len(frac)
|
141 |
-
return 0.5 * (10 ** (-d)) if d > 0 else 0.5 # if integer shown, allow 卤0.5
|
142 |
-
|
143 |
-
def evaluate_equations(eq_dict: dict, sol_dict: dict,
|
144 |
-
base_rel_tol: float = 1e-6,
|
145 |
-
base_abs_tol: float = 1e-9,
|
146 |
-
honor_display_precision: bool = True):
|
147 |
"""
|
148 |
-
|
149 |
-
|
150 |
-
for key, eq_str in (eq_dict or {}).items():
|
151 |
-
parsed = _parse_equation(eq_str)
|
152 |
-
if not parsed:
|
153 |
continue
|
154 |
-
lhs, rhs_str = parsed
|
155 |
-
|
156 |
try:
|
157 |
-
|
158 |
-
rhs_val = eval(rhs_str, {"__builtins__": None}, {})
|
159 |
-
except Exception:
|
160 |
-
continue
|
161 |
-
|
162 |
-
# dynamic absolute tolerance from RHS formatting (e.g., 0.33 -> 0.005)
|
163 |
-
abs_tol = base_abs_tol
|
164 |
-
if honor_display_precision:
|
165 |
-
dyn = _abs_tol_from_display(rhs_str)
|
166 |
-
if dyn is not None:
|
167 |
-
abs_tol = max(abs_tol, dyn)
|
168 |
-
|
169 |
-
if not math.isclose(lhs_val, rhs_val, rel_tol=base_rel_tol, abs_tol=abs_tol):
|
170 |
-
correct_rhs_val = round(lhs_val, 6)
|
171 |
-
correct_rhs_str = f"{correct_rhs_val:.6f}".rstrip('0').rstrip('.')
|
172 |
-
return {
|
173 |
-
"error": True,
|
174 |
-
"line_key": key,
|
175 |
-
"line_text": sol_dict.get(key, "N/A"),
|
176 |
-
"original_flawed_calc": eq_str,
|
177 |
-
"sanitized_lhs": lhs,
|
178 |
-
"original_rhs": rhs_str,
|
179 |
-
"correct_rhs": correct_rhs_str,
|
180 |
-
}
|
181 |
-
|
182 |
-
return {"error": False}
|
183 |
-
|
184 |
|
|
|
|
|
185 |
|
|
|
186 |
|
|
|
|
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
Recover equations from the extractor's output.
|
191 |
-
|
192 |
-
Strategy:
|
193 |
-
1) Try to parse a real JSON object (if present).
|
194 |
-
2) Parse relaxed key-value lines like 'L1: ...' or 'FA=...'.
|
195 |
-
3) Also fall back to linewise equations (e.g., '=24/2=12', '7*2=14') and
|
196 |
-
merge them as L1, L2, ... preserving order. Keep FA if present.
|
197 |
-
"""
|
198 |
-
out = {}
|
199 |
-
|
200 |
-
if not response or not isinstance(response, str):
|
201 |
-
return out
|
202 |
-
|
203 |
-
text = response.strip()
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
214 |
except Exception:
|
215 |
-
pass
|
216 |
-
|
217 |
-
# --- 2) relaxed key/value lines: Lk : value or FA = value ---
|
218 |
-
relaxed = {}
|
219 |
-
for ln in text.splitlines():
|
220 |
-
ln = ln.strip().strip(',')
|
221 |
-
if not ln:
|
222 |
continue
|
223 |
-
m = re.match(r'(?i)^(L\d+|FA)\s*[:=]\s*(.+?)\s*$', ln)
|
224 |
-
if m:
|
225 |
-
k = m.group(1).strip()
|
226 |
-
v = m.group(2).strip().rstrip(',')
|
227 |
-
relaxed[k] = v
|
228 |
-
out.update(relaxed)
|
229 |
-
|
230 |
-
# Count how many L-keys we already have
|
231 |
-
existing_L = sorted(
|
232 |
-
int(k[1:]) for k in out.keys()
|
233 |
-
if k.startswith("L") and k[1:].isdigit()
|
234 |
-
)
|
235 |
-
next_L = (max(existing_L) + 1) if existing_L else 1
|
236 |
-
|
237 |
-
# --- 3) linewise fallback: harvest bare equations and merge ---
|
238 |
-
def _looks_like_equation(s: str) -> str | None:
|
239 |
-
s = sanitize_equation_string(s or "").lstrip('=')
|
240 |
-
if '=' in s and any(ch.isdigit() for ch in s):
|
241 |
-
return s
|
242 |
-
return None
|
243 |
-
|
244 |
-
# set of existing equation strings to avoid duplicates
|
245 |
-
seen_vals = set(v for v in out.values() if isinstance(v, str))
|
246 |
-
|
247 |
-
for ln in text.splitlines():
|
248 |
-
ln = ln.strip().strip(',')
|
249 |
-
if not ln or re.match(r'(?i)^(L\d+|FA)\s*[:=]', ln):
|
250 |
-
# skip lines we already captured as relaxed pairs
|
251 |
-
continue
|
252 |
-
eq = _looks_like_equation(ln)
|
253 |
-
if eq and eq not in seen_vals:
|
254 |
-
out[f"L{next_L}"] = eq
|
255 |
-
seen_vals.add(eq)
|
256 |
-
next_L += 1
|
257 |
|
258 |
-
return
|
259 |
|
260 |
# --- Prompts ---
|
261 |
EXTRACTOR_SYSTEM_PROMPT = \
|
262 |
"""[ROLE]
|
263 |
You are an expert at parsing mathematical solutions.
|
|
|
264 |
[TASK]
|
265 |
-
You are given a mathematical solution. Your task is to extract the calculation
|
|
|
266 |
**This is a literal transcription task. Follow these rules with extreme precision:**
|
267 |
- **RULE 1: Transcribe EXACTLY.** Do not correct mathematical errors. If a line implies `2+2=5`, your output for that line must be `2+2=5`.
|
268 |
-
- **RULE 2: Isolate the Equation.** Your output must contain ONLY the equation
|
269 |
-
|
270 |
[RESPONSE FORMAT]
|
271 |
-
Your response must
|
272 |
-
|
273 |
-
- The key should be the line identifier (e.g., "L1", "L2", "FA" for the final answer line).
|
274 |
-
- The value should be the extracted equation string (e.g., "10+5=15").
|
275 |
-
- If a line contains no calculation, the value must be an empty string.
|
276 |
"""
|
277 |
-
|
278 |
CLASSIFIER_SYSTEM_PROMPT = \
|
279 |
"""You are a mathematics tutor.
|
280 |
You will be given a math word problem and a solution written by a student.
|
281 |
Carefully analyze the problem and solution LINE-BY-LINE and determine whether there are any errors in the solution."""
|
282 |
|
283 |
-
|
284 |
-
FEW_SHOT_EXAMPLE_1_SOLUTION = {
|
285 |
-
"L1": "2% of $90 is (2/100)*$90 = $1.8",
|
286 |
-
"L2": "2% of $60 is (2/100)*$60 = $1.2",
|
287 |
-
"L3": "The second transaction was reversed without the service charge so only a total of $90+$1.8+$1.2 = $39 was deducted from his account",
|
288 |
-
"L4": "He will have a balance of $400-$39 = $361",
|
289 |
-
"FA": "361"
|
290 |
-
}
|
291 |
-
|
292 |
-
FEW_SHOT_EXAMPLE_1_EQUATIONS = {
|
293 |
-
"L1": "(2/100)*90=1.8",
|
294 |
-
"L2": "(2/100)*60=1.2",
|
295 |
-
"L3": "90+1.8+1.2=39",
|
296 |
-
"L4": "400-39=361",
|
297 |
-
"FA": ""
|
298 |
-
}
|
299 |
-
|
300 |
-
|
301 |
-
# --- Example 2 ---
|
302 |
-
FEW_SHOT_EXAMPLE_2_SOLUTION = {
|
303 |
-
"L1": "She drinks 2 bottles a day and there are 24 bottles in a case so a case will last 24/2 = 12 days",
|
304 |
-
"L2": "She needs enough to last her 240 days and 1 case will last her 12 days so she needs 240/12 = 20 cases",
|
305 |
-
"L3": "Each case is on sale for $12.00 and she needs 20 cases so that's 12*20 = $240.00",
|
306 |
-
"FA": "240"
|
307 |
-
}
|
308 |
-
|
309 |
-
FEW_SHOT_EXAMPLE_2_EQUATIONS = {
|
310 |
-
"L1": "24/2=12",
|
311 |
-
"L2": "240/12=20",
|
312 |
-
"L3": "12*20=240.00",
|
313 |
-
"FA": ""
|
314 |
-
}
|
315 |
-
|
316 |
-
def create_extractor_messages(solution_json_str: str) -> list:
|
317 |
-
"""
|
318 |
-
Returns a list of dictionaries representing the conversation history for the prompt.
|
319 |
-
"""
|
320 |
-
# Start with the constant few-shot examples defined globally
|
321 |
-
messages = [
|
322 |
-
{"role": "user", "content": f"{EXTRACTOR_SYSTEM_PROMPT}\n\n### Solution:\n{json.dumps(FEW_SHOT_EXAMPLE_1_SOLUTION, indent=2)}"},
|
323 |
-
{"role": "assistant", "content": json.dumps(FEW_SHOT_EXAMPLE_1_EQUATIONS, indent=2)},
|
324 |
-
{"role": "user", "content": f"### Solution:\n{json.dumps(FEW_SHOT_EXAMPLE_2_SOLUTION, indent=2)}"},
|
325 |
-
{"role": "assistant", "content": json.dumps(FEW_SHOT_EXAMPLE_2_EQUATIONS, indent=2)},
|
326 |
-
]
|
327 |
-
|
328 |
-
# Add the final user query to the end of the conversation
|
329 |
-
final_user_prompt = f"### Solution:\n{solution_json_str}"
|
330 |
-
messages.append({"role": "user", "content": final_user_prompt})
|
331 |
-
|
332 |
-
return messages
|
333 |
|
334 |
gemma_model = None
|
335 |
gemma_tokenizer = None
|
@@ -344,51 +171,38 @@ def load_model():
|
|
344 |
device = DEVICE
|
345 |
|
346 |
# --- Model 1: Equation Extractor (Gemma-3 with Unsloth) ---
|
347 |
-
extractor_adapter_repo = "arvindsuresh-math/gemma-3-1b-equation-extractor-
|
348 |
base_gemma_model = "unsloth/gemma-3-1b-it-unsloth-bnb-4bit"
|
349 |
|
350 |
gemma_model, gemma_tokenizer = FastModel.from_pretrained(
|
351 |
model_name=base_gemma_model,
|
352 |
-
max_seq_length=
|
353 |
dtype=None,
|
354 |
load_in_4bit=True,
|
355 |
)
|
356 |
-
|
357 |
-
# --- Gemma tokenizer hygiene (fix the right-padding warning) ---
|
358 |
-
if gemma_tokenizer.pad_token is None:
|
359 |
-
gemma_tokenizer.pad_token = gemma_tokenizer.eos_token
|
360 |
-
gemma_tokenizer.padding_side = "left" # align last tokens across the batch
|
361 |
-
|
362 |
gemma_model = PeftModel.from_pretrained(gemma_model, extractor_adapter_repo)
|
363 |
|
364 |
-
|
365 |
# --- Model 2: Conceptual Error Classifier (Phi-4) ---
|
366 |
classifier_adapter_repo = "arvindsuresh-math/phi-4-error-binary-classifier"
|
367 |
base_phi_model = "microsoft/Phi-4-mini-instruct"
|
368 |
|
369 |
-
|
370 |
-
DTYPE = torch.float32
|
371 |
quantization_config = BitsAndBytesConfig(
|
372 |
load_in_4bit=True,
|
373 |
bnb_4bit_quant_type="nf4",
|
374 |
-
bnb_4bit_compute_dtype=DTYPE
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
classifier_backbone_base = AutoModelForCausalLM.from_pretrained(
|
379 |
base_phi_model,
|
380 |
quantization_config=quantization_config,
|
381 |
-
device_map=
|
382 |
-
trust_remote_code=
|
383 |
-
|
384 |
-
attn_implementation="eager",
|
385 |
-
)
|
386 |
|
387 |
classifier_tokenizer = AutoTokenizer.from_pretrained(
|
388 |
base_phi_model,
|
389 |
-
trust_remote_code=
|
390 |
-
|
391 |
-
|
392 |
classifier_tokenizer.padding_side = "left"
|
393 |
if classifier_tokenizer.pad_token is None:
|
394 |
classifier_tokenizer.pad_token = classifier_tokenizer.eos_token
|
@@ -404,121 +218,138 @@ def load_model():
|
|
404 |
classifier_model.classifier.load_state_dict(torch.load(classifier_head_path, map_location=device))
|
405 |
|
406 |
classifier_model.to(device)
|
407 |
-
classifier_model = classifier_model.to(
|
408 |
|
409 |
-
classifier_model.eval() # Set model to evaluation mode
|
410 |
-
|
411 |
-
logger.info("Model loaded successfully")
|
412 |
-
return "Model loaded successfully!"
|
413 |
|
414 |
except Exception as e:
|
415 |
logger.error(f"Error loading model: {e}")
|
416 |
return f"Error loading model: {e}"
|
417 |
def models_ready():
|
418 |
return all([gemma_model, gemma_tokenizer, classifier_model, classifier_tokenizer])
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
|
420 |
-
def
|
421 |
"""
|
422 |
-
|
423 |
-
Stage 1: computational check via Gemma extraction + evaluator.
|
424 |
-
Stage 2: conceptual/correct check via Phi-4 classifier.
|
425 |
-
Returns: {"classification": "...", "confidence": "...", "explanation": "..."}
|
426 |
"""
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
440 |
|
441 |
-
inputs = gemma_tokenizer([prompt], return_tensors="pt").to(device)
|
442 |
-
outputs = gemma_model.generate(
|
443 |
-
**inputs,
|
444 |
-
max_new_tokens=300,
|
445 |
-
use_cache=True,
|
446 |
-
pad_token_id=gemma_tokenizer.pad_token_id,
|
447 |
-
do_sample=False,
|
448 |
-
temperature=0.0,
|
449 |
-
)
|
450 |
|
451 |
-
|
452 |
-
|
453 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
454 |
|
455 |
-
|
456 |
-
|
|
|
|
|
|
|
457 |
|
458 |
-
|
459 |
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
476 |
explanation = (
|
477 |
-
"A
|
478 |
-
f
|
479 |
-
f"The
|
480 |
)
|
481 |
-
return {
|
482 |
-
"classification": "Computational Error",
|
483 |
-
"confidence": "100%",
|
484 |
-
"explanation": explanation,
|
485 |
-
}
|
486 |
-
|
487 |
-
# --------------------------
|
488 |
-
# STAGE 2: CONCEPTUAL CHECK
|
489 |
-
# --------------------------
|
490 |
-
input_text = (
|
491 |
-
f"{CLASSIFIER_SYSTEM_PROMPT}\n\n"
|
492 |
-
f"### Problem:\n{math_question}\n\n"
|
493 |
-
f"### Answer:\n{proposed_solution}"
|
494 |
-
)
|
495 |
-
cls_inputs = classifier_tokenizer(
|
496 |
-
input_text, return_tensors="pt", truncation=True, max_length=512
|
497 |
-
).to(device)
|
498 |
-
|
499 |
-
with torch.no_grad():
|
500 |
-
logits = classifier_model(**cls_inputs)["logits"]
|
501 |
-
probs = torch.softmax(logits, dim=-1).squeeze()
|
502 |
-
|
503 |
-
is_correct_prob = float(probs[0])
|
504 |
-
is_flawed_prob = float(probs[1])
|
505 |
-
|
506 |
-
if debug:
|
507 |
-
print("\n[Phi-4 logits]", logits.to(torch.float32).cpu().numpy())
|
508 |
-
print("[Phi-4 probs] [Correct, Flawed]:", [is_correct_prob, is_flawed_prob])
|
509 |
-
|
510 |
-
if is_flawed_prob > 0.5:
|
511 |
-
return {
|
512 |
-
"classification": "Conceptual Error",
|
513 |
-
"confidence": f"{is_flawed_prob:.2%}",
|
514 |
-
"explanation": "Logic or setup appears to have a conceptual error.",
|
515 |
-
}
|
516 |
else:
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
522 |
|
523 |
|
524 |
def classify_solution(question: str, solution: str):
|
@@ -533,9 +364,9 @@ def classify_solution(question: str, solution: str):
|
|
533 |
return "Models not loaded", 0.0, ""
|
534 |
|
535 |
try:
|
536 |
-
res =
|
537 |
|
538 |
-
return res["classification"], res["
|
539 |
except Exception:
|
540 |
logger.exception("inference failed")
|
541 |
|
|
|
17 |
import json
|
18 |
import re
|
19 |
import math
|
|
|
20 |
|
21 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
|
|
|
64 |
loss = nn.functional.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
|
65 |
return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}
|
66 |
|
|
|
|
|
67 |
|
68 |
+
# ===================================================================
|
69 |
+
# 3. HELPERS
|
70 |
+
# ===================================================================
|
71 |
+
|
72 |
# --- Helper Functions ---
|
73 |
+
def extract_equation_from_response(response: str) -> str | None:
|
74 |
+
"""Extracts content from between <eq> and </eq> tags."""
|
75 |
+
match = re.search(r'<eq>(.*?)</eq>', response, re.DOTALL)
|
76 |
+
return match.group(1) if match else None
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
def sanitize_equation_string(expression: str) -> str:
|
79 |
+
"""
|
80 |
+
Enhanced version with your requested simplified parenthesis logic.
|
81 |
+
"""
|
82 |
if not isinstance(expression, str):
|
83 |
return ""
|
84 |
|
85 |
+
# Your requested parenthesis logic:
|
86 |
+
if expression.count('(') > expression.count(')') and expression.startswith('('):
|
87 |
+
expression = expression[1:]
|
88 |
+
elif expression.count(')') > expression.count('(') and expression.endswith(')'):
|
89 |
+
expression = expression[:-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
sanitized = expression.replace(' ', '')
|
92 |
+
sanitized = sanitized.replace('x', '*').replace('脳', '*')
|
93 |
+
sanitized = re.sub(r'/([a-zA-Z]+)', '', sanitized)
|
94 |
+
sanitized = re.sub(r'[^\d.()+\-*/=]', '', sanitized)
|
95 |
+
return sanitized
|
96 |
|
97 |
+
def evaluate_equations(eq_dict: dict, sol_dict: dict):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
"""
|
99 |
+
Evaluates extracted equations and returns a more detailed dictionary for
|
100 |
+
building clearer explanations.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
"""
|
102 |
+
for key, eq_str in eq_dict.items():
|
103 |
+
if not eq_str or "=" not in eq_str:
|
|
|
|
|
|
|
104 |
continue
|
|
|
|
|
105 |
try:
|
106 |
+
sanitized_eq = sanitize_equation_string(eq_str)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
+
if not sanitized_eq or "=" not in sanitized_eq:
|
109 |
+
continue
|
110 |
|
111 |
+
lhs, rhs_str = sanitized_eq.split('=', 1)
|
112 |
|
113 |
+
if not lhs or not rhs_str:
|
114 |
+
continue
|
115 |
|
116 |
+
lhs_val = eval(lhs, {"__builtins__": None}, {})
|
117 |
+
rhs_val = eval(rhs_str, {"__builtins__": None}, {})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
if not math.isclose(lhs_val, rhs_val, rel_tol=1e-2):
|
120 |
+
correct_rhs_val = round(lhs_val, 4)
|
121 |
+
correct_rhs_str = f"{correct_rhs_val:.4f}".rstrip('0').rstrip('.')
|
122 |
+
|
123 |
+
# Return a more detailed dictionary for better explanations
|
124 |
+
return {
|
125 |
+
"error": True,
|
126 |
+
"line_key": key,
|
127 |
+
"line_text": sol_dict.get(key, "N/A"),
|
128 |
+
"original_flawed_calc": eq_str, # The raw model output
|
129 |
+
"sanitized_lhs": lhs, # The clean left side
|
130 |
+
"original_rhs": rhs_str, # The clean right side
|
131 |
+
"correct_rhs": correct_rhs_str, # The correct right side
|
132 |
+
}
|
133 |
except Exception:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
return {"error": False}
|
137 |
|
138 |
# --- Prompts ---
|
139 |
EXTRACTOR_SYSTEM_PROMPT = \
|
140 |
"""[ROLE]
|
141 |
You are an expert at parsing mathematical solutions.
|
142 |
+
|
143 |
[TASK]
|
144 |
+
You are given a single line from a mathematical solution. Your task is to extract the calculation from this line.
|
145 |
+
|
146 |
**This is a literal transcription task. Follow these rules with extreme precision:**
|
147 |
- **RULE 1: Transcribe EXACTLY.** Do not correct mathematical errors. If a line implies `2+2=5`, your output for that line must be `2+2=5`.
|
148 |
+
- **RULE 2: Isolate the Equation.** Your output must contain ONLY the equation, with no surrounding text, units, or currency symbols. Always use `*` for multiplication.
|
149 |
+
|
150 |
[RESPONSE FORMAT]
|
151 |
+
Your response must ONLY contain the extracted equation, wrapped in <eq> and </eq> tags.
|
152 |
+
If the line contains no calculation, respond with empty tags: <eq></eq>.
|
|
|
|
|
|
|
153 |
"""
|
|
|
154 |
CLASSIFIER_SYSTEM_PROMPT = \
|
155 |
"""You are a mathematics tutor.
|
156 |
You will be given a math word problem and a solution written by a student.
|
157 |
Carefully analyze the problem and solution LINE-BY-LINE and determine whether there are any errors in the solution."""
|
158 |
|
159 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
gemma_model = None
|
162 |
gemma_tokenizer = None
|
|
|
171 |
device = DEVICE
|
172 |
|
173 |
# --- Model 1: Equation Extractor (Gemma-3 with Unsloth) ---
|
174 |
+
extractor_adapter_repo = "arvindsuresh-math/gemma-3-1b-equation-line-extractor-aug-10"
|
175 |
base_gemma_model = "unsloth/gemma-3-1b-it-unsloth-bnb-4bit"
|
176 |
|
177 |
gemma_model, gemma_tokenizer = FastModel.from_pretrained(
|
178 |
model_name=base_gemma_model,
|
179 |
+
max_seq_length=350,
|
180 |
dtype=None,
|
181 |
load_in_4bit=True,
|
182 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
gemma_model = PeftModel.from_pretrained(gemma_model, extractor_adapter_repo)
|
184 |
|
|
|
185 |
# --- Model 2: Conceptual Error Classifier (Phi-4) ---
|
186 |
classifier_adapter_repo = "arvindsuresh-math/phi-4-error-binary-classifier"
|
187 |
base_phi_model = "microsoft/Phi-4-mini-instruct"
|
188 |
|
189 |
+
DTYPE = torch.float16
|
|
|
190 |
quantization_config = BitsAndBytesConfig(
|
191 |
load_in_4bit=True,
|
192 |
bnb_4bit_quant_type="nf4",
|
193 |
+
bnb_4bit_compute_dtype=DTYPE
|
194 |
+
)
|
|
|
|
|
195 |
classifier_backbone_base = AutoModelForCausalLM.from_pretrained(
|
196 |
base_phi_model,
|
197 |
quantization_config=quantization_config,
|
198 |
+
device_map="auto",
|
199 |
+
trust_remote_code=True,
|
200 |
+
)
|
|
|
|
|
201 |
|
202 |
classifier_tokenizer = AutoTokenizer.from_pretrained(
|
203 |
base_phi_model,
|
204 |
+
trust_remote_code=True
|
205 |
+
)
|
|
|
206 |
classifier_tokenizer.padding_side = "left"
|
207 |
if classifier_tokenizer.pad_token is None:
|
208 |
classifier_tokenizer.pad_token = classifier_tokenizer.eos_token
|
|
|
218 |
classifier_model.classifier.load_state_dict(torch.load(classifier_head_path, map_location=device))
|
219 |
|
220 |
classifier_model.to(device)
|
221 |
+
classifier_model = classifier_model.to(torch.float16)
|
222 |
|
223 |
+
classifier_model.eval() # Set model to evaluation mode
|
|
|
|
|
|
|
224 |
|
225 |
except Exception as e:
|
226 |
logger.error(f"Error loading model: {e}")
|
227 |
return f"Error loading model: {e}"
|
228 |
def models_ready():
|
229 |
return all([gemma_model, gemma_tokenizer, classifier_model, classifier_tokenizer])
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
# ===================================================================
|
234 |
+
# 4. PIPELINE COMPONENTS
|
235 |
+
# ===================================================================
|
236 |
|
237 |
+
def run_conceptual_check(question: str, solution: str, model, tokenizer) -> dict:
|
238 |
"""
|
239 |
+
STAGE 1: Runs the Phi-4 classifier with memory optimizations.
|
|
|
|
|
|
|
240 |
"""
|
241 |
+
input_text = f"{CLASSIFIER_SYSTEM_PROMPT}\n\n### Problem:\n{question}\n\n### Answer:\n{solution}"
|
242 |
+
inputs = tokenizer(
|
243 |
+
input_text,
|
244 |
+
return_tensors="pt",
|
245 |
+
truncation=True,
|
246 |
+
max_length=512).to(device)
|
247 |
+
|
248 |
+
# Use inference_mode and disable cache for better performance and memory management
|
249 |
+
with torch.inference_mode():
|
250 |
+
outputs = model(**inputs, use_cache=False)
|
251 |
+
|
252 |
+
# Explicitly cast logits to float32 for stable downstream processing
|
253 |
+
logits = outputs["logits"].to(torch.float32)
|
254 |
+
probs = torch.softmax(logits, dim=-1).squeeze().tolist()
|
255 |
+
|
256 |
+
is_flawed_prob = probs[1]
|
257 |
+
prediction = "flawed" if is_flawed_prob > 0.5 else "correct"
|
258 |
+
|
259 |
+
return {
|
260 |
+
"prediction": prediction,
|
261 |
+
"probabilities": {"correct": probs[0], "flawed": probs[1]}
|
262 |
+
}
|
263 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
+
def run_computational_check(solution: str, model, tokenizer, batch_size: int = 32) -> dict:
|
266 |
+
"""
|
267 |
+
STAGE 2: Splits a solution into lines and performs a batched computational check.
|
268 |
+
(Corrected to handle PEMDAS/parentheses)
|
269 |
+
"""
|
270 |
+
lines = [line.strip() for line in solution.strip().split('\n') if line.strip() and "FINAL ANSWER:" not in line.upper()]
|
271 |
+
if not lines:
|
272 |
+
return {"error": False}
|
273 |
+
|
274 |
+
# Create a batch of prompts, one for each line
|
275 |
+
prompts = []
|
276 |
+
for line in lines:
|
277 |
+
messages = [{"role": "user", "content": f"{EXTRACTOR_SYSTEM_PROMPT}\n\n### Solution Line:\n{line}"}]
|
278 |
+
prompts.append(tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True))
|
279 |
+
|
280 |
+
# Run batched inference
|
281 |
+
tokenizer.padding_side = "left"
|
282 |
+
inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(device)
|
283 |
+
tokenizer.padding_side = "left"
|
284 |
+
outputs = model.generate(**inputs, max_new_tokens=64, use_cache=True, pad_token_id=tokenizer.pad_token_id)
|
285 |
+
tokenizer.padding_side = "left"
|
286 |
+
decoded_outputs = tokenizer.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
287 |
+
|
288 |
+
# Evaluate each line's extracted equation
|
289 |
+
for i, raw_output in enumerate(decoded_outputs):
|
290 |
+
equation = extract_equation_from_response(raw_output)
|
291 |
+
if not equation or "=" not in equation:
|
292 |
+
continue
|
293 |
|
294 |
+
try:
|
295 |
+
# Sanitize the full equation string, preserving parentheses
|
296 |
+
sanitized_eq = sanitize_equation_string(equation)
|
297 |
+
if "=" not in sanitized_eq:
|
298 |
+
continue
|
299 |
|
300 |
+
lhs, rhs_str = sanitized_eq.split('=', 1)
|
301 |
|
302 |
+
# Evaluate the sanitized LHS, which now correctly includes parentheses
|
303 |
+
lhs_val = eval(lhs, {"__builtins__": None}, {})
|
304 |
+
|
305 |
+
# Compare with the RHS
|
306 |
+
if not math.isclose(lhs_val, float(rhs_str), rel_tol=1e-2):
|
307 |
+
return {
|
308 |
+
"error": True,
|
309 |
+
"line_text": lines[i],
|
310 |
+
"correct_calc": f"{lhs} = {round(lhs_val, 4)}"
|
311 |
+
}
|
312 |
+
except Exception:
|
313 |
+
continue # Skip lines where evaluation fails
|
314 |
+
|
315 |
+
return {"error": False}
|
316 |
+
|
317 |
+
|
318 |
+
def analyze_solution(question: str, solution: str):
|
319 |
+
"""
|
320 |
+
Main orchestrator that runs the full pipeline and generates the final explanation.
|
321 |
+
"""
|
322 |
+
# STAGE 1: Conceptual Check (Fast)
|
323 |
+
conceptual_result = run_conceptual_check(question, solution, classifier_model, classifier_tokenizer)
|
324 |
+
confidence = conceptual_result['probabilities'][conceptual_result['prediction']]
|
325 |
+
|
326 |
+
# STAGE 2: Computational Check (Slower, Batched)
|
327 |
+
computational_result = run_computational_check(solution, gemma_model, gemma_tokenizer)
|
328 |
+
|
329 |
+
# FINAL VERDICT LOGIC
|
330 |
+
if computational_result["error"]:
|
331 |
+
classification = "computational_error"
|
332 |
explanation = (
|
333 |
+
f"A calculation error was found.\n"
|
334 |
+
f"On the line: \"{computational_result['line_text']}\"\n"
|
335 |
+
f"The correct calculation should be: {computational_result['correct_calc']}"
|
336 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
else:
|
338 |
+
# If calculations are fine, the final verdict is the conceptual one.
|
339 |
+
if conceptual_result['prediction'] == 'correct':
|
340 |
+
classification = 'correct'
|
341 |
+
explanation = "All calculations are correct and the overall logic appears to be sound."
|
342 |
+
else: # This now correctly corresponds to 'flawed'
|
343 |
+
classification = 'conceptual_error' # Produce the user-facing label
|
344 |
+
explanation = "All calculations are correct, but there appears to be a conceptual error in the logic or setup of the solution."
|
345 |
+
final_verdict = {
|
346 |
+
"classification": classification,
|
347 |
+
"explanation": explanation
|
348 |
+
}
|
349 |
+
|
350 |
+
return final_verdict
|
351 |
+
|
352 |
+
|
353 |
|
354 |
|
355 |
def classify_solution(question: str, solution: str):
|
|
|
364 |
return "Models not loaded", 0.0, ""
|
365 |
|
366 |
try:
|
367 |
+
res = analyze_solution(question, solution)
|
368 |
|
369 |
+
return res["classification"], res["explanation"]
|
370 |
except Exception:
|
371 |
logger.exception("inference failed")
|
372 |
|
requirements.txt
CHANGED
@@ -1,7 +1,11 @@
|
|
1 |
gradio
|
2 |
torch
|
3 |
transformers
|
|
|
4 |
peft
|
|
|
|
|
5 |
accelerate
|
6 |
spaces
|
7 |
-
unsloth
|
|
|
|
1 |
gradio
|
2 |
torch
|
3 |
transformers
|
4 |
+
bitsandbytes
|
5 |
peft
|
6 |
+
trl
|
7 |
+
triton
|
8 |
accelerate
|
9 |
spaces
|
10 |
+
unsloth
|
11 |
+
unsloth_zoo
|