File size: 16,850 Bytes
e87cacb 4fb809e e87cacb 4fb809e e87cacb 1334832 cde06dc d0f548c e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 3609ee0 e87cacb 1334832 e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 9251b67 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 3609ee0 76ebeac e87cacb 76ebeac 3609ee0 76ebeac e87cacb 76ebeac e87cacb 76ebeac e87cacb 1334832 e87cacb 76ebeac e87cacb 76ebeac a1c981d e87cacb 9251b67 e87cacb 3609ee0 e87cacb d6b181a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
# app.py - Gradio version (much simpler for HF Spaces)
import unsloth
from unsloth import FastModel
import gradio as gr
import logging
import spaces
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from peft import PeftModel
from huggingface_hub import hf_hub_download
import json
import re
import math
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables for model and tokenizer
label_mapping = {0: "✅ Correct", 1: "🤔 Conceptually Flawed", 2: "🔢 Computationally Flawed"}
# ===================================================================
# 1. DEFINE CUSTOM CLASSIFIER (Required for Phi-4)
# ===================================================================
class GPTSequenceClassifier(nn.Module):
def __init__(self, base_model, num_labels):
super().__init__()
self.base = base_model
hidden_size = base_model.config.hidden_size
self.classifier = nn.Linear(hidden_size, num_labels, bias=True)
self.num_labels = num_labels
def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
outputs = self.base(input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True, **kwargs)
last_hidden_state = outputs.hidden_states[-1]
pooled_output = last_hidden_state[:, -1, :]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
loss = nn.functional.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}
# ===================================================================
# 3. HELPERS
# ===================================================================
# --- Helper Functions ---
def extract_equation_from_response(response: str) -> str | None:
"""Extracts content from between <eq> and </eq> tags."""
match = re.search(r'<eq>(.*?)</eq>', response, re.DOTALL)
return match.group(1) if match else None
def sanitize_equation_string(expression: str) -> str:
"""
Enhanced version with your requested simplified parenthesis logic.
"""
if not isinstance(expression, str):
return ""
# Your requested parenthesis logic:
if expression.count('(') > expression.count(')') and expression.startswith('('):
expression = expression[1:]
elif expression.count(')') > expression.count('(') and expression.endswith(')'):
expression = expression[:-1]
sanitized = expression.replace(' ', '')
sanitized = sanitized.replace('x', '*').replace('×', '*')
sanitized = re.sub(r'/([a-zA-Z]+)', '', sanitized)
sanitized = re.sub(r'[^\d.()+\-*/=]', '', sanitized)
return sanitized
def evaluate_equations(eq_dict: dict, sol_dict: dict):
"""
Evaluates extracted equations and returns a more detailed dictionary for
building clearer explanations.
"""
for key, eq_str in eq_dict.items():
if not eq_str or "=" not in eq_str:
continue
try:
sanitized_eq = sanitize_equation_string(eq_str)
if not sanitized_eq or "=" not in sanitized_eq:
continue
lhs, rhs_str = sanitized_eq.split('=', 1)
if not lhs or not rhs_str:
continue
lhs_val = eval(lhs, {"__builtins__": None}, {})
rhs_val = eval(rhs_str, {"__builtins__": None}, {})
if not math.isclose(lhs_val, rhs_val, rel_tol=1e-2):
correct_rhs_val = round(lhs_val, 4)
correct_rhs_str = f"{correct_rhs_val:.4f}".rstrip('0').rstrip('.')
# Return a more detailed dictionary for better explanations
return {
"error": True,
"line_key": key,
"line_text": sol_dict.get(key, "N/A"),
"original_flawed_calc": eq_str, # The raw model output
"sanitized_lhs": lhs, # The clean left side
"original_rhs": rhs_str, # The clean right side
"correct_rhs": correct_rhs_str, # The correct right side
}
except Exception:
continue
return {"error": False}
# --- Prompts ---
EXTRACTOR_SYSTEM_PROMPT = \
"""[ROLE]
You are an expert at parsing mathematical solutions.
[TASK]
You are given a single line from a mathematical solution. Your task is to extract the calculation from this line.
**This is a literal transcription task. Follow these rules with extreme precision:**
- **RULE 1: Transcribe EXACTLY.** Do not correct mathematical errors. If a line implies `2+2=5`, your output for that line must be `2+2=5`.
- **RULE 2: Isolate the Equation.** Your output must contain ONLY the equation, with no surrounding text, units, or currency symbols. Always use `*` for multiplication.
[RESPONSE FORMAT]
Your response must ONLY contain the extracted equation, wrapped in <eq> and </eq> tags.
If the line contains no calculation, respond with empty tags: <eq></eq>.
"""
CLASSIFIER_SYSTEM_PROMPT = \
"""You are a mathematics tutor.
You will be given a math word problem and a solution written by a student.
Carefully analyze the problem and solution LINE-BY-LINE and determine whether there are any errors in the solution."""
gemma_model = None
gemma_tokenizer = None
classifier_model = None
classifier_tokenizer = None
def load_model():
"""Load your trained model here"""
global gemma_model, gemma_tokenizer, classifier_model, classifier_tokenizer
try:
device = DEVICE
# --- Model 1: Equation Extractor (Gemma-3 with Unsloth) ---
extractor_adapter_repo = "arvindsuresh-math/gemma-3-1b-equation-line-extractor-aug-10"
base_gemma_model = "unsloth/gemma-3-1b-it-unsloth-bnb-4bit"
gemma_model, gemma_tokenizer = FastModel.from_pretrained(
model_name=base_gemma_model,
max_seq_length=350,
dtype=None,
load_in_4bit=True,
)
gemma_model = PeftModel.from_pretrained(gemma_model, extractor_adapter_repo)
# --- Model 2: Conceptual Error Classifier (Phi-4) ---
classifier_adapter_repo = "arvindsuresh-math/phi-4-error-binary-classifier"
base_phi_model = "microsoft/Phi-4-mini-instruct"
DTYPE = torch.float16
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=DTYPE
)
classifier_backbone_base = AutoModelForCausalLM.from_pretrained(
base_phi_model,
quantization_config=quantization_config,
device_map="auto",
trust_remote_code=True,
)
classifier_tokenizer = AutoTokenizer.from_pretrained(
base_phi_model,
trust_remote_code=True
)
classifier_tokenizer.padding_side = "left"
if classifier_tokenizer.pad_token is None:
classifier_tokenizer.pad_token = classifier_tokenizer.eos_token
classifier_backbone_peft = PeftModel.from_pretrained(
classifier_backbone_base,
classifier_adapter_repo
)
classifier_model = GPTSequenceClassifier(classifier_backbone_peft, num_labels=2)
# Download and load the custom classifier head's state dictionary
classifier_head_path = hf_hub_download(repo_id=classifier_adapter_repo, filename="classifier_head.pth")
classifier_model.classifier.load_state_dict(torch.load(classifier_head_path, map_location=device))
classifier_model.to(device)
classifier_model = classifier_model.to(torch.float16)
classifier_model.eval() # Set model to evaluation mode
except Exception as e:
logger.error(f"Error loading model: {e}")
return f"Error loading model: {e}"
def models_ready() -> bool:
ready = all(x is not None for x in [
gemma_model, gemma_tokenizer, classifier_model, classifier_tokenizer
])
if not ready:
logger.warning(
"models_ready=False gemma_model=%s gemma_tok=%s phi_model=%s phi_tok=%s",
type(gemma_model).__name__ if gemma_model is not None else None,
type(gemma_tokenizer).__name__ if gemma_tokenizer is not None else None,
type(classifier_model).__name__ if classifier_model is not None else None,
type(classifier_tokenizer).__name__ if classifier_tokenizer is not None else None,
)
return ready
# Load model on startup
msg = load_model()
logger.info("load_model(): %s", msg)
# ===================================================================
# 4. PIPELINE COMPONENTS
# ===================================================================
def run_conceptual_check(question: str, solution: str, model, tokenizer) -> dict:
"""
STAGE 1: Runs the Phi-4 classifier with memory optimizations.
"""
device = DEVICE
input_text = f"{CLASSIFIER_SYSTEM_PROMPT}\n\n### Problem:\n{question}\n\n### Answer:\n{solution}"
inputs = tokenizer(
input_text,
return_tensors="pt",
truncation=True,
max_length=512).to(device)
# Use inference_mode and disable cache for better performance and memory management
with torch.inference_mode():
outputs = model(**inputs, use_cache=False)
# Explicitly cast logits to float32 for stable downstream processing
logits = outputs["logits"].to(torch.float32)
probs = torch.softmax(logits, dim=-1).squeeze().tolist()
is_flawed_prob = probs[1]
prediction = "flawed" if is_flawed_prob > 0.5 else "correct"
return {
"prediction": prediction,
"probabilities": {"correct": probs[0], "flawed": probs[1]}
}
def run_computational_check(solution: str, model, tokenizer, batch_size: int = 32) -> dict:
"""
STAGE 2: Splits a solution into lines and performs a batched computational check.
(Corrected to handle PEMDAS/parentheses)
"""
device = DEVICE
lines = [line.strip() for line in solution.strip().split('\n') if line.strip() and "FINAL ANSWER:" not in line.upper()]
if not lines:
return {"error": False}
# Create a batch of prompts, one for each line
prompts = []
for line in lines:
messages = [{"role": "user", "content": f"{EXTRACTOR_SYSTEM_PROMPT}\n\n### Solution Line:\n{line}"}]
prompts.append(tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True))
# Run batched inference
tokenizer.padding_side = "left"
inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(device)
tokenizer.padding_side = "left"
outputs = model.generate(**inputs, max_new_tokens=64, use_cache=True, pad_token_id=tokenizer.pad_token_id)
tokenizer.padding_side = "left"
decoded_outputs = tokenizer.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
# Evaluate each line's extracted equation
for i, raw_output in enumerate(decoded_outputs):
equation = extract_equation_from_response(raw_output)
if not equation or "=" not in equation:
continue
try:
# Sanitize the full equation string, preserving parentheses
sanitized_eq = sanitize_equation_string(equation)
if "=" not in sanitized_eq:
continue
lhs, rhs_str = sanitized_eq.split('=', 1)
# Evaluate the sanitized LHS, which now correctly includes parentheses
lhs_val = eval(lhs, {"__builtins__": None}, {})
# Compare with the RHS
if not math.isclose(lhs_val, float(rhs_str), rel_tol=1e-2):
return {
"error": True,
"line_text": lines[i],
"correct_calc": f"{lhs} = {round(lhs_val, 4)}"
}
except Exception:
continue # Skip lines where evaluation fails
return {"error": False}
def analyze_solution(question: str, solution: str):
"""
Main orchestrator that runs the full pipeline and generates the final explanation.
"""
# STAGE 1: Conceptual Check (Fast)
conceptual_result = run_conceptual_check(question, solution, classifier_model, classifier_tokenizer)
confidence = conceptual_result['probabilities'][conceptual_result['prediction']]
# STAGE 2: Computational Check (Slower, Batched)
computational_result = run_computational_check(solution, gemma_model, gemma_tokenizer)
# FINAL VERDICT LOGIC
if computational_result["error"]:
classification = "computational_error"
explanation = (
f"A calculation error was found.\n"
f"On the line: \"{computational_result['line_text']}\"\n"
f"The correct calculation should be: {computational_result['correct_calc']}"
)
else:
# If calculations are fine, the final verdict is the conceptual one.
if conceptual_result['prediction'] == 'correct':
classification = 'correct'
explanation = "All calculations are correct and the overall logic appears to be sound."
else: # This now correctly corresponds to 'flawed'
classification = 'conceptual_error' # Produce the user-facing label
explanation = "All calculations are correct, but there appears to be a conceptual error in the logic or setup of the solution."
final_verdict = {
"classification": classification,
"explanation": explanation
}
return final_verdict
def classify_solution(question: str, solution: str):
"""
Classify the math solution
Returns: (classification_label, confidence_score, explanation)
"""
if not question.strip() or not solution.strip():
return "Please fill in both fields", 0.0, ""
if not models_ready():
return "Models not loaded", 0.0, ""
try:
res = analyze_solution(question, solution)
return res["classification"], res["explanation"]
except Exception:
logger.exception("inference failed")
# Create Gradio interface
with gr.Blocks(title="Math Solution Classifier", theme=gr.themes.Soft()) as app:
gr.Markdown("# 🧮 Math Solution Classifier")
gr.Markdown("Classify math solutions as correct, conceptually flawed, or computationally flawed.")
with gr.Row():
with gr.Column():
question_input = gr.Textbox(
label="Math Question",
placeholder="e.g., Solve for x: 2x + 5 = 13",
lines=3
)
solution_input = gr.Textbox(
label="Proposed Solution",
placeholder="e.g., 2x + 5 = 13\n2x = 13 - 5\n2x = 8\nx = 4",
lines=5
)
classify_btn = gr.Button("Classify Solution", variant="primary")
with gr.Column():
classification_output = gr.Textbox(label="Classification", interactive=False)
confidence_output = gr.Textbox(label="Confidence", interactive=False)
explanation_output = gr.Textbox(label="Explanation", interactive=False, lines=3)
# Examples
gr.Examples(
examples=[
[
"Solve for x: 2x + 5 = 13",
"2x + 5 = 13\n2x = 13 - 5\n2x = 8\nx = 4"
],
[
"John has three apples and Mary has seven, how many apples do they have together?",
"They have 7 + 3 = 11 apples." # This should be computationally flawed
],
[
"What is 15% of 200?",
"15% = 15/100 = 0.15\n0.15 × 200 = 30"
]
],
inputs=[question_input, solution_input]
)
classify_btn.click(
fn=classify_solution,
inputs=[question_input, solution_input],
outputs=[classification_output, explanation_output]
)
if __name__ == "__main__":
app.launch() |