Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,104 Bytes
65411d8 7373d19 68ea82c 7373d19 68ea82c 65411d8 68ea82c 65411d8 68ea82c 65411d8 68ea82c 65411d8 68ea82c 65411d8 68ea82c 65411d8 68ea82c 65411d8 68ea82c 65411d8 ebd9a25 65411d8 68ea82c 65411d8 68ea82c 65411d8 68ea82c 65411d8 68ea82c 65411d8 68ea82c 65411d8 68ea82c 65411d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import numpy as np
import gradio as gr
from huggingface_hub import hf_hub_download
import SimpleITK as sitk # noqa: N813
import torch
from monai.transforms import Compose, ScaleIntensityd, SpatialPadd
from cinema import ConvUNetR
from pathlib import Path
from cinema.examples.inference.segmentation_sax import (
plot_segmentations as plot_segmentations_sax,
plot_volume_changes as plot_volume_changes_sax,
)
from cinema.examples.inference.segmentation_lax_4c import (
plot_segmentations as plot_segmentations_lax,
plot_volume_changes as plot_volume_changes_lax,
post_process as post_process_lax_segmentation,
)
from tqdm import tqdm
import spaces
import requests
# cache directories
cache_dir = Path("/tmp/.cinema")
cache_dir.mkdir(parents=True, exist_ok=True)
# set device and dtype
dtype, device = torch.float32, torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda")
if torch.cuda.is_bf16_supported():
dtype = torch.bfloat16
# Create the Gradio interface
theme = gr.themes.Ocean(
primary_hue="red",
secondary_hue="purple",
)
@spaces.GPU
def segmentation_sax_inference(
images: torch.Tensor,
view: str,
transform: Compose,
model: ConvUNetR,
progress=gr.Progress(),
) -> np.ndarray:
model.to(device)
n_slices, n_frames = images.shape[-2:]
labels_list = []
for t in tqdm(range(0, n_frames), total=n_frames):
progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
batch = transform({view: torch.from_numpy(images[None, ..., t])})
batch = {
k: v[None, ...].to(device=device, dtype=torch.float32)
for k, v in batch.items()
}
with (
torch.no_grad(),
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
):
logits = model(batch)[view]
labels_list.append(torch.argmax(logits, dim=1)[0, ..., :n_slices])
labels = torch.stack(labels_list, dim=-1).detach().cpu().numpy()
return labels
def segmentation_sax(trained_dataset, seed, image_id, t_step, progress=gr.Progress()):
# Fixed parameters
view = "sax"
split = "train" if image_id <= 100 else "test"
trained_dataset = {
"ACDC": "acdc",
"M&MS": "mnms",
"M&MS2": "mnms2",
}[str(trained_dataset)]
# Download and load model
progress(0, desc="Downloading model...")
image_path = hf_hub_download(
repo_id="mathpluscode/ACDC",
repo_type="dataset",
filename=f"{split}/patient{image_id:03d}/patient{image_id:03d}_sax_t.nii.gz",
cache_dir=cache_dir,
)
model = ConvUNetR.from_finetuned(
repo_id="mathpluscode/CineMA",
model_filename=f"finetuned/segmentation/{trained_dataset}_{view}/{trained_dataset}_{view}_{seed}.safetensors",
config_filename=f"finetuned/segmentation/{trained_dataset}_{view}/config.yaml",
cache_dir=cache_dir,
)
# Inference
progress(0, desc="Downloading data...")
transform = Compose(
[
ScaleIntensityd(keys=view),
SpatialPadd(keys=view, spatial_size=(192, 192, 16), method="end"),
]
)
images = np.transpose(sitk.GetArrayFromImage(sitk.ReadImage(image_path)))
images = images[..., ::t_step]
labels = segmentation_sax_inference(images, view, transform, model, progress)
progress(1, desc="Plotting results...")
fig1 = plot_segmentations_sax(images, labels, t_step)
fig2 = plot_volume_changes_sax(labels, t_step)
return fig1, fig2
def segmentation_sax_tab():
with gr.Blocks() as sax_interface:
gr.Markdown(
"""
This page demonstrates the segmentation of cardiac structures in the Short-Axis (SAX) view.
Please adjust the settings on the right panels and click the button to run the inference.
"""
)
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("""
## Description
### Data
The available data is from ACDC. All images have been resampled to 1 mm Γ 1 mm Γ 10 mm and centre-cropped to 192 mm Γ 192 mm for each SAX slice.
Image 1 - 100 are from the training set, and image 101 - 150 are from the test set.
### Model
The available models are finetuned on different datasets ([ACDC](https://www.creatis.insa-lyon.fr/Challenge/acdc/), [M&Ms](https://www.ub.edu/mnms/), and [M&Ms2](https://www.ub.edu/mnms-2/)). For each dataset, there are 3 models finetuned on different seeds: 0, 1, 2.
### Visualization
The left figure shows the segmentation of ventricles and myocardium every n time steps across all SAX slices.
The right figure plots the ventricle and mycoardium volumes across all inference time frames.
""")
with gr.Column(scale=3):
gr.Markdown("## Data Settings")
image_id = gr.Slider(
minimum=1,
maximum=150,
step=1,
label="Choose an ACDC image, ID is between 1 and 150",
value=150,
)
t_step = gr.Slider(
minimum=1,
maximum=10,
step=1,
label="Choose the gap between time frames",
value=2,
)
with gr.Column(scale=3):
gr.Markdown("## Model Setting")
trained_dataset = gr.Dropdown(
choices=["ACDC", "M&MS", "M&MS2"],
label="Choose which dataset the segmentation model was finetuned on",
value="ACDC",
)
seed = gr.Slider(
minimum=0,
maximum=2,
step=1,
label="Choose which seed the finetuning used",
value=0,
)
run_button = gr.Button("Run SAX segmentation inference", variant="primary")
with gr.Row():
with gr.Column():
gr.Markdown("## Ventricle and Myocardium Segmentation")
segmentation_plot = gr.Plot(show_label=False)
with gr.Column():
gr.Markdown("## Ejection Fraction Prediction")
volume_plot = gr.Plot(show_label=False)
run_button.click(
fn=segmentation_sax,
inputs=[trained_dataset, seed, image_id, t_step],
outputs=[segmentation_plot, volume_plot],
)
return sax_interface
@spaces.GPU
def segmentation_lax_inference(
images: torch.Tensor,
view: str,
transform: Compose,
model: ConvUNetR,
progress=gr.Progress(),
) -> np.ndarray:
model.to(device)
n_frames = images.shape[-1]
labels_list = []
for t in tqdm(range(n_frames), total=n_frames):
progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
batch = transform({view: torch.from_numpy(images[None, ..., 0, t])})
batch = {
k: v[None, ...].to(device=device, dtype=dtype) for k, v in batch.items()
}
with (
torch.no_grad(),
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
):
logits = model(batch)[view] # (1, 4, x, y)
labels = torch.argmax(logits, dim=1)[0].detach().cpu().numpy() # (x, y)
# the model seems to hallucinate an additional right ventricle and myocardium sometimes
# find the connected component that is closest to left ventricle
labels = post_process_lax_segmentation(labels)
labels_list.append(labels)
labels = np.stack(labels_list, axis=-1) # (x, y, t)
return labels
def segmentation_lax(seed, image_id, progress=gr.Progress()):
# Fixed parameters
trained_dataset = "mnms2"
view = "lax_4c"
# Download and load model
progress(0, desc="Downloading model...")
image_url = f"https://raw.githubusercontent.com/mathpluscode/CineMA/main/cinema/examples/data/ukb/{image_id}/{image_id}_{view}.nii.gz"
image_path = cache_dir / f"{image_id}_{view}.nii.gz"
response = requests.get(image_url)
with open(image_path, "wb") as f:
f.write(response.content)
model = ConvUNetR.from_finetuned(
repo_id="mathpluscode/CineMA",
model_filename=f"finetuned/segmentation/{trained_dataset}_{view}/{trained_dataset}_{view}_{seed}.safetensors",
config_filename=f"finetuned/segmentation/{trained_dataset}_{view}/config.yaml",
cache_dir=cache_dir,
)
# Inference
progress(0, desc="Downloading data...")
transform = ScaleIntensityd(keys=view)
images = np.transpose(sitk.GetArrayFromImage(sitk.ReadImage(image_path)))
labels = segmentation_lax_inference(images, view, transform, model, progress)
progress(1, desc="Plotting results...")
fig1 = plot_segmentations_lax(images, labels)
fig2 = plot_volume_changes_lax(labels)
return fig1, fig2
def segmentation_lax_tab():
with gr.Blocks() as lax_interface:
gr.Markdown(
"""
This page demonstrates the segmentation of cardiac structures in the Long-Axis (LAX) view.
Please adjust the settings on the right panels and click the button to run the inference.
"""
)
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("""
## Description
### Data
There are four example samples. All images have been resampled to 1 mm Γ 1 mm and centre-cropped.
### Model
The available models are finetuned on [M&Ms2](https://www.ub.edu/mnms-2/). For each dataset, there are 3 models finetuned on different seeds: 0, 1, 2.
### Visualization
The left figure shows the segmentation of ventricles and myocardium across all time frames.
The right figure plots the ventricle and mycoardium volumes across all inference time frames.
""")
with gr.Column(scale=3):
gr.Markdown("## Data Settings")
image_id = gr.Slider(
minimum=1,
maximum=4,
step=1,
label="Choose an image, ID is between 1 and 4",
value=4,
)
with gr.Column(scale=3):
gr.Markdown("## Model Setting")
seed = gr.Slider(
minimum=0,
maximum=2,
step=1,
label="Choose which seed the finetuning used",
value=0,
)
run_button = gr.Button("Run LAX segmentation inference", variant="primary")
with gr.Row():
with gr.Column():
gr.Markdown("## Ventricle and Myocardium Segmentation")
segmentation_plot = gr.Plot(show_label=False)
with gr.Column():
gr.Markdown("## Ejection Fraction Prediction")
volume_plot = gr.Plot(show_label=False)
run_button.click(
fn=segmentation_lax,
inputs=[seed, image_id],
outputs=[segmentation_plot, volume_plot],
)
return lax_interface
with gr.Blocks(
theme=theme, title="CineMA: A Foundation Model for Cine Cardiac MRI"
) as demo:
gr.Markdown(
"""
# CineMA: A Foundation Model for Cine Cardiac MRI π₯π«
This demo showcases the capabilities of CineMA in multiple tasks.
For more details, checkout our [GitHub](https://github.com/mathpluscode/CineMA).
"""
)
with gr.Tabs() as tabs:
with gr.TabItem("Segmentation in SAX View"):
segmentation_sax_tab()
with gr.TabItem("Segmentation in LAX View"):
segmentation_lax_tab()
demo.launch()
|