Refine Gradio interface by simplifying API endpoint settings, maintaining minimal configurations for the Blocks interface and button actions to enhance usability and performance.
2fe5022
# Not ready to use yet | |
import spaces | |
import argparse | |
import numpy as np | |
import gradio as gr | |
from omegaconf import OmegaConf | |
import torch | |
from PIL import Image | |
import PIL | |
from pipelines import TwoStagePipeline | |
from huggingface_hub import hf_hub_download | |
import os | |
import rembg | |
from typing import Any | |
import json | |
import os | |
import json | |
import argparse | |
from model import CRM | |
from inference import generate3d | |
# Move model initialization into a function that will be called by workers | |
def init_model(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--stage1_config", | |
type=str, | |
default="configs/nf7_v3_SNR_rd_size_stroke.yaml", | |
help="config for stage1", | |
) | |
parser.add_argument( | |
"--stage2_config", | |
type=str, | |
default="configs/stage2-v2-snr.yaml", | |
help="config for stage2", | |
) | |
parser.add_argument("--device", type=str, default="cuda") | |
args = parser.parse_args() | |
# Download model files | |
crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth") | |
specs = json.load(open("configs/specs_objaverse_total.json")) | |
model = CRM(specs) | |
model.load_state_dict(torch.load(crm_path, map_location="cpu"), strict=False) | |
model = model.to(args.device) | |
# Load configs | |
stage1_config = OmegaConf.load(args.stage1_config).config | |
stage2_config = OmegaConf.load(args.stage2_config).config | |
stage2_sampler_config = stage2_config.sampler | |
stage1_sampler_config = stage1_config.sampler | |
stage1_model_config = stage1_config.models | |
stage2_model_config = stage2_config.models | |
xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth") | |
pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth") | |
stage1_model_config.resume = pixel_path | |
stage2_model_config.resume = xyz_path | |
pipeline = TwoStagePipeline( | |
stage1_model_config, | |
stage2_model_config, | |
stage1_sampler_config, | |
stage2_sampler_config, | |
device=args.device, | |
dtype=torch.float32 | |
) | |
return model, pipeline, args | |
# Global variables to store model and pipeline | |
model = None | |
pipeline = None | |
def get_model(): | |
"""Lazy initialization of model and pipeline""" | |
global model, pipeline, args | |
if model is None or pipeline is None: | |
model, pipeline, args = init_model() | |
return model, pipeline | |
rembg_session = rembg.new_session() | |
def expand_to_square(image, bg_color=(0, 0, 0, 0)): | |
# expand image to 1:1 | |
width, height = image.size | |
if width == height: | |
return image | |
new_size = (max(width, height), max(width, height)) | |
new_image = Image.new("RGBA", new_size, bg_color) | |
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2) | |
new_image.paste(image, paste_position) | |
return new_image | |
def check_input_image(input_image): | |
"""Check if the input image is valid""" | |
if input_image is None: | |
raise gr.Error("No image uploaded!") | |
return input_image | |
def remove_background( | |
image: PIL.Image.Image, | |
rembg_session: Any = None, | |
force: bool = False, | |
**rembg_kwargs, | |
) -> PIL.Image.Image: | |
do_remove = True | |
if image.mode == "RGBA" and image.getextrema()[3][0] < 255: | |
# explain why current do not rm bg | |
print("alhpa channl not enpty, skip remove background, using alpha channel as mask") | |
background = Image.new("RGBA", image.size, (0, 0, 0, 0)) | |
image = Image.alpha_composite(background, image) | |
do_remove = False | |
do_remove = do_remove or force | |
if do_remove: | |
image = rembg.remove(image, session=rembg_session, **rembg_kwargs) | |
return image | |
def do_resize_content(original_image: Image, scale_rate): | |
# resize image content wile retain the original image size | |
if scale_rate != 1: | |
# Calculate the new size after rescaling | |
new_size = tuple(int(dim * scale_rate) for dim in original_image.size) | |
# Resize the image while maintaining the aspect ratio | |
resized_image = original_image.resize(new_size) | |
# Create a new image with the original size and black background | |
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0)) | |
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2) | |
padded_image.paste(resized_image, paste_position) | |
return padded_image | |
else: | |
return original_image | |
def add_background(image, bg_color=(255, 255, 255)): | |
# given an RGBA image, alpha channel is used as mask to add background color | |
background = Image.new("RGBA", image.size, bg_color) | |
return Image.alpha_composite(background, image) | |
def add_random_background(image, color): | |
# Add a random background to the image | |
width, height = image.size | |
background = Image.new("RGBA", image.size, color) | |
return Image.alpha_composite(background, image) | |
def preprocess_image(input_image, background_choice, foreground_ratio, back_groud_color): | |
"""Preprocess the input image""" | |
try: | |
# Get model and pipeline when needed | |
model, pipeline = get_model() | |
# Convert to numpy array | |
np_image = np.array(input_image) | |
# Process background | |
if background_choice == "Remove Background": | |
np_image = rembg.remove(np_image, session=rembg_session) | |
elif background_choice == "Custom Background": | |
np_image = add_random_background(np_image, back_groud_color) | |
# Resize content if needed | |
if foreground_ratio != 1.0: | |
np_image = do_resize_content(Image.fromarray(np_image), foreground_ratio) | |
np_image = np.array(np_image) | |
return Image.fromarray(np_image) | |
except Exception as e: | |
print(f"Error in preprocess_image: {str(e)}") | |
raise e | |
def gen_image(processed_image, seed, scale, step): | |
"""Generate the 3D model""" | |
try: | |
# Get model and pipeline when needed | |
model, pipeline = get_model() | |
# Convert to numpy array | |
np_image = np.array(processed_image) | |
# Set random seed | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
# Generate images | |
np_imgs, np_xyzs = pipeline.generate( | |
np_image, | |
guidance_scale=scale, | |
num_inference_steps=step | |
) | |
# Generate 3D model | |
glb_path = generate3d(model, np_imgs, np_xyzs, args.device) | |
return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path | |
except Exception as e: | |
print(f"Error in gen_image: {str(e)}") | |
raise e | |
_DESCRIPTION = ''' | |
* Our [official implementation](https://github.com/thu-ml/CRM) uses UV texture instead of vertex color. It has better texture than this online demo. | |
* Project page of CRM: https://ml.cs.tsinghua.edu.cn/~zhengyi/CRM/ | |
* If you find the output unsatisfying, try using different seeds:) | |
''' | |
def generate(image, bg_choice, fg_ratio, bg_color, seed_val, guidance, steps): | |
if image is None: | |
raise gr.Error("No image uploaded!") | |
processed = preprocess_image(image, bg_choice, fg_ratio, bg_color) | |
return gen_image(processed, seed_val, guidance, steps) | |
# Create a Blocks interface with minimal settings | |
with gr.Blocks( | |
analytics_enabled=False, | |
title="CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model" | |
) as demo: | |
gr.Markdown(_DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image( | |
label="Image input", | |
image_mode="RGBA", | |
sources="upload", | |
type="pil", | |
) | |
bg_choice = gr.Radio( | |
["Alpha as mask", "Auto Remove background"], | |
value="Auto Remove background", | |
label="background choice" | |
) | |
fg_ratio = gr.Slider( | |
label="Foreground Ratio", | |
minimum=0.5, | |
maximum=1.0, | |
value=1.0, | |
step=0.05, | |
) | |
bg_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=False) | |
seed_val = gr.Number(value=1234, label="seed", precision=0) | |
guidance = gr.Number(value=5.5, minimum=3, maximum=10, label="guidance_scale") | |
steps = gr.Number(value=30, minimum=30, maximum=100, label="sample steps", precision=0) | |
generate_btn = gr.Button("Generate") | |
with gr.Column(): | |
output_rgb = gr.Image(interactive=False, label="Output RGB image") | |
output_ccm = gr.Image(interactive=False, label="Output CCM image") | |
output_glb = gr.Model3D(label="Output GLB", interactive=False) | |
# Connect the button click event | |
generate_btn.click( | |
fn=generate, | |
inputs=[input_image, bg_choice, fg_ratio, bg_color, seed_val, guidance, steps], | |
outputs=[output_rgb, output_ccm, output_glb], | |
concurrency_limit=1 | |
) | |
# Add examples without caching | |
gr.Examples( | |
examples=[[os.path.join("examples", i)] for i in os.listdir("examples")], | |
inputs=input_image, | |
cache_examples=False # Disable example caching | |
) | |
# Launch with Spaces-specific settings | |
if __name__ == "__main__": | |
import os | |
from spaces.zero.gradio import launch # Use Spaces specific launch function | |
if os.environ.get("SPACE_ID") is not None: # We're running on Hugging Face Spaces | |
launch( | |
demo, | |
server_name="0.0.0.0", | |
server_port=7860, | |
show_error=True, | |
enable_queue=True, | |
max_threads=1, | |
api_name=None, # Disable API endpoint generation | |
share=False, # Don't use share on Spaces | |
prevent_thread_lock=True # Prevent thread lock issues | |
) | |
else: # Local development | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
show_error=True, | |
share=True, # Only use share=True for local development | |
api_name=None # Disable API endpoint | |
) |