Spaces:
mashroo
/
Runtime error

CRM / app.py
YoussefAnso's picture
Refine Gradio interface by simplifying API endpoint settings, maintaining minimal configurations for the Blocks interface and button actions to enhance usability and performance.
2fe5022
# Not ready to use yet
import spaces
import argparse
import numpy as np
import gradio as gr
from omegaconf import OmegaConf
import torch
from PIL import Image
import PIL
from pipelines import TwoStagePipeline
from huggingface_hub import hf_hub_download
import os
import rembg
from typing import Any
import json
import os
import json
import argparse
from model import CRM
from inference import generate3d
# Move model initialization into a function that will be called by workers
def init_model():
parser = argparse.ArgumentParser()
parser.add_argument(
"--stage1_config",
type=str,
default="configs/nf7_v3_SNR_rd_size_stroke.yaml",
help="config for stage1",
)
parser.add_argument(
"--stage2_config",
type=str,
default="configs/stage2-v2-snr.yaml",
help="config for stage2",
)
parser.add_argument("--device", type=str, default="cuda")
args = parser.parse_args()
# Download model files
crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
specs = json.load(open("configs/specs_objaverse_total.json"))
model = CRM(specs)
model.load_state_dict(torch.load(crm_path, map_location="cpu"), strict=False)
model = model.to(args.device)
# Load configs
stage1_config = OmegaConf.load(args.stage1_config).config
stage2_config = OmegaConf.load(args.stage2_config).config
stage2_sampler_config = stage2_config.sampler
stage1_sampler_config = stage1_config.sampler
stage1_model_config = stage1_config.models
stage2_model_config = stage2_config.models
xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth")
pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth")
stage1_model_config.resume = pixel_path
stage2_model_config.resume = xyz_path
pipeline = TwoStagePipeline(
stage1_model_config,
stage2_model_config,
stage1_sampler_config,
stage2_sampler_config,
device=args.device,
dtype=torch.float32
)
return model, pipeline, args
# Global variables to store model and pipeline
model = None
pipeline = None
@spaces.GPU
def get_model():
"""Lazy initialization of model and pipeline"""
global model, pipeline, args
if model is None or pipeline is None:
model, pipeline, args = init_model()
return model, pipeline
rembg_session = rembg.new_session()
def expand_to_square(image, bg_color=(0, 0, 0, 0)):
# expand image to 1:1
width, height = image.size
if width == height:
return image
new_size = (max(width, height), max(width, height))
new_image = Image.new("RGBA", new_size, bg_color)
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
new_image.paste(image, paste_position)
return new_image
def check_input_image(input_image):
"""Check if the input image is valid"""
if input_image is None:
raise gr.Error("No image uploaded!")
return input_image
def remove_background(
image: PIL.Image.Image,
rembg_session: Any = None,
force: bool = False,
**rembg_kwargs,
) -> PIL.Image.Image:
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
# explain why current do not rm bg
print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
background = Image.new("RGBA", image.size, (0, 0, 0, 0))
image = Image.alpha_composite(background, image)
do_remove = False
do_remove = do_remove or force
if do_remove:
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
return image
def do_resize_content(original_image: Image, scale_rate):
# resize image content wile retain the original image size
if scale_rate != 1:
# Calculate the new size after rescaling
new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
# Resize the image while maintaining the aspect ratio
resized_image = original_image.resize(new_size)
# Create a new image with the original size and black background
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
padded_image.paste(resized_image, paste_position)
return padded_image
else:
return original_image
def add_background(image, bg_color=(255, 255, 255)):
# given an RGBA image, alpha channel is used as mask to add background color
background = Image.new("RGBA", image.size, bg_color)
return Image.alpha_composite(background, image)
def add_random_background(image, color):
# Add a random background to the image
width, height = image.size
background = Image.new("RGBA", image.size, color)
return Image.alpha_composite(background, image)
@spaces.GPU
def preprocess_image(input_image, background_choice, foreground_ratio, back_groud_color):
"""Preprocess the input image"""
try:
# Get model and pipeline when needed
model, pipeline = get_model()
# Convert to numpy array
np_image = np.array(input_image)
# Process background
if background_choice == "Remove Background":
np_image = rembg.remove(np_image, session=rembg_session)
elif background_choice == "Custom Background":
np_image = add_random_background(np_image, back_groud_color)
# Resize content if needed
if foreground_ratio != 1.0:
np_image = do_resize_content(Image.fromarray(np_image), foreground_ratio)
np_image = np.array(np_image)
return Image.fromarray(np_image)
except Exception as e:
print(f"Error in preprocess_image: {str(e)}")
raise e
@spaces.GPU
def gen_image(processed_image, seed, scale, step):
"""Generate the 3D model"""
try:
# Get model and pipeline when needed
model, pipeline = get_model()
# Convert to numpy array
np_image = np.array(processed_image)
# Set random seed
torch.manual_seed(seed)
np.random.seed(seed)
# Generate images
np_imgs, np_xyzs = pipeline.generate(
np_image,
guidance_scale=scale,
num_inference_steps=step
)
# Generate 3D model
glb_path = generate3d(model, np_imgs, np_xyzs, args.device)
return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path
except Exception as e:
print(f"Error in gen_image: {str(e)}")
raise e
_DESCRIPTION = '''
* Our [official implementation](https://github.com/thu-ml/CRM) uses UV texture instead of vertex color. It has better texture than this online demo.
* Project page of CRM: https://ml.cs.tsinghua.edu.cn/~zhengyi/CRM/
* If you find the output unsatisfying, try using different seeds:)
'''
def generate(image, bg_choice, fg_ratio, bg_color, seed_val, guidance, steps):
if image is None:
raise gr.Error("No image uploaded!")
processed = preprocess_image(image, bg_choice, fg_ratio, bg_color)
return gen_image(processed, seed_val, guidance, steps)
# Create a Blocks interface with minimal settings
with gr.Blocks(
analytics_enabled=False,
title="CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model"
) as demo:
gr.Markdown(_DESCRIPTION)
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Image input",
image_mode="RGBA",
sources="upload",
type="pil",
)
bg_choice = gr.Radio(
["Alpha as mask", "Auto Remove background"],
value="Auto Remove background",
label="background choice"
)
fg_ratio = gr.Slider(
label="Foreground Ratio",
minimum=0.5,
maximum=1.0,
value=1.0,
step=0.05,
)
bg_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=False)
seed_val = gr.Number(value=1234, label="seed", precision=0)
guidance = gr.Number(value=5.5, minimum=3, maximum=10, label="guidance_scale")
steps = gr.Number(value=30, minimum=30, maximum=100, label="sample steps", precision=0)
generate_btn = gr.Button("Generate")
with gr.Column():
output_rgb = gr.Image(interactive=False, label="Output RGB image")
output_ccm = gr.Image(interactive=False, label="Output CCM image")
output_glb = gr.Model3D(label="Output GLB", interactive=False)
# Connect the button click event
generate_btn.click(
fn=generate,
inputs=[input_image, bg_choice, fg_ratio, bg_color, seed_val, guidance, steps],
outputs=[output_rgb, output_ccm, output_glb],
concurrency_limit=1
)
# Add examples without caching
gr.Examples(
examples=[[os.path.join("examples", i)] for i in os.listdir("examples")],
inputs=input_image,
cache_examples=False # Disable example caching
)
# Launch with Spaces-specific settings
if __name__ == "__main__":
import os
from spaces.zero.gradio import launch # Use Spaces specific launch function
if os.environ.get("SPACE_ID") is not None: # We're running on Hugging Face Spaces
launch(
demo,
server_name="0.0.0.0",
server_port=7860,
show_error=True,
enable_queue=True,
max_threads=1,
api_name=None, # Disable API endpoint generation
share=False, # Don't use share on Spaces
prevent_thread_lock=True # Prevent thread lock issues
)
else: # Local development
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
share=True, # Only use share=True for local development
api_name=None # Disable API endpoint
)