File size: 10,287 Bytes
2a8a75a bf7d47c 2a8a75a ee52108 1c2b941 ee52108 2a8a75a ee52108 1c2b941 ee52108 1c2b941 ee52108 1c2b941 ee52108 2a8a75a c5236d2 2a8a75a ee52108 2a8a75a ee52108 2a8a75a ee52108 2a8a75a 1c2b941 ee52108 1c2b941 ee52108 2a8a75a 9a005ba e98b019 39dcad5 2fe5022 0d60bce dbc79a8 2fe5022 dbc79a8 2fe5022 dbc79a8 0d60bce dbc79a8 0d60bce dbc79a8 0f74ccf 0d60bce dbc79a8 0d60bce 2fe5022 0d60bce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# Not ready to use yet
import spaces
import argparse
import numpy as np
import gradio as gr
from omegaconf import OmegaConf
import torch
from PIL import Image
import PIL
from pipelines import TwoStagePipeline
from huggingface_hub import hf_hub_download
import os
import rembg
from typing import Any
import json
import os
import json
import argparse
from model import CRM
from inference import generate3d
# Move model initialization into a function that will be called by workers
def init_model():
parser = argparse.ArgumentParser()
parser.add_argument(
"--stage1_config",
type=str,
default="configs/nf7_v3_SNR_rd_size_stroke.yaml",
help="config for stage1",
)
parser.add_argument(
"--stage2_config",
type=str,
default="configs/stage2-v2-snr.yaml",
help="config for stage2",
)
parser.add_argument("--device", type=str, default="cuda")
args = parser.parse_args()
# Download model files
crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
specs = json.load(open("configs/specs_objaverse_total.json"))
model = CRM(specs)
model.load_state_dict(torch.load(crm_path, map_location="cpu"), strict=False)
model = model.to(args.device)
# Load configs
stage1_config = OmegaConf.load(args.stage1_config).config
stage2_config = OmegaConf.load(args.stage2_config).config
stage2_sampler_config = stage2_config.sampler
stage1_sampler_config = stage1_config.sampler
stage1_model_config = stage1_config.models
stage2_model_config = stage2_config.models
xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth")
pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth")
stage1_model_config.resume = pixel_path
stage2_model_config.resume = xyz_path
pipeline = TwoStagePipeline(
stage1_model_config,
stage2_model_config,
stage1_sampler_config,
stage2_sampler_config,
device=args.device,
dtype=torch.float32
)
return model, pipeline, args
# Global variables to store model and pipeline
model = None
pipeline = None
@spaces.GPU
def get_model():
"""Lazy initialization of model and pipeline"""
global model, pipeline, args
if model is None or pipeline is None:
model, pipeline, args = init_model()
return model, pipeline
rembg_session = rembg.new_session()
def expand_to_square(image, bg_color=(0, 0, 0, 0)):
# expand image to 1:1
width, height = image.size
if width == height:
return image
new_size = (max(width, height), max(width, height))
new_image = Image.new("RGBA", new_size, bg_color)
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
new_image.paste(image, paste_position)
return new_image
def check_input_image(input_image):
"""Check if the input image is valid"""
if input_image is None:
raise gr.Error("No image uploaded!")
return input_image
def remove_background(
image: PIL.Image.Image,
rembg_session: Any = None,
force: bool = False,
**rembg_kwargs,
) -> PIL.Image.Image:
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
# explain why current do not rm bg
print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
background = Image.new("RGBA", image.size, (0, 0, 0, 0))
image = Image.alpha_composite(background, image)
do_remove = False
do_remove = do_remove or force
if do_remove:
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
return image
def do_resize_content(original_image: Image, scale_rate):
# resize image content wile retain the original image size
if scale_rate != 1:
# Calculate the new size after rescaling
new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
# Resize the image while maintaining the aspect ratio
resized_image = original_image.resize(new_size)
# Create a new image with the original size and black background
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
padded_image.paste(resized_image, paste_position)
return padded_image
else:
return original_image
def add_background(image, bg_color=(255, 255, 255)):
# given an RGBA image, alpha channel is used as mask to add background color
background = Image.new("RGBA", image.size, bg_color)
return Image.alpha_composite(background, image)
def add_random_background(image, color):
# Add a random background to the image
width, height = image.size
background = Image.new("RGBA", image.size, color)
return Image.alpha_composite(background, image)
@spaces.GPU
def preprocess_image(input_image, background_choice, foreground_ratio, back_groud_color):
"""Preprocess the input image"""
try:
# Get model and pipeline when needed
model, pipeline = get_model()
# Convert to numpy array
np_image = np.array(input_image)
# Process background
if background_choice == "Remove Background":
np_image = rembg.remove(np_image, session=rembg_session)
elif background_choice == "Custom Background":
np_image = add_random_background(np_image, back_groud_color)
# Resize content if needed
if foreground_ratio != 1.0:
np_image = do_resize_content(Image.fromarray(np_image), foreground_ratio)
np_image = np.array(np_image)
return Image.fromarray(np_image)
except Exception as e:
print(f"Error in preprocess_image: {str(e)}")
raise e
@spaces.GPU
def gen_image(processed_image, seed, scale, step):
"""Generate the 3D model"""
try:
# Get model and pipeline when needed
model, pipeline = get_model()
# Convert to numpy array
np_image = np.array(processed_image)
# Set random seed
torch.manual_seed(seed)
np.random.seed(seed)
# Generate images
np_imgs, np_xyzs = pipeline.generate(
np_image,
guidance_scale=scale,
num_inference_steps=step
)
# Generate 3D model
glb_path = generate3d(model, np_imgs, np_xyzs, args.device)
return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path
except Exception as e:
print(f"Error in gen_image: {str(e)}")
raise e
_DESCRIPTION = '''
* Our [official implementation](https://github.com/thu-ml/CRM) uses UV texture instead of vertex color. It has better texture than this online demo.
* Project page of CRM: https://ml.cs.tsinghua.edu.cn/~zhengyi/CRM/
* If you find the output unsatisfying, try using different seeds:)
'''
def generate(image, bg_choice, fg_ratio, bg_color, seed_val, guidance, steps):
if image is None:
raise gr.Error("No image uploaded!")
processed = preprocess_image(image, bg_choice, fg_ratio, bg_color)
return gen_image(processed, seed_val, guidance, steps)
# Create a Blocks interface with minimal settings
with gr.Blocks(
analytics_enabled=False,
title="CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model"
) as demo:
gr.Markdown(_DESCRIPTION)
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Image input",
image_mode="RGBA",
sources="upload",
type="pil",
)
bg_choice = gr.Radio(
["Alpha as mask", "Auto Remove background"],
value="Auto Remove background",
label="background choice"
)
fg_ratio = gr.Slider(
label="Foreground Ratio",
minimum=0.5,
maximum=1.0,
value=1.0,
step=0.05,
)
bg_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=False)
seed_val = gr.Number(value=1234, label="seed", precision=0)
guidance = gr.Number(value=5.5, minimum=3, maximum=10, label="guidance_scale")
steps = gr.Number(value=30, minimum=30, maximum=100, label="sample steps", precision=0)
generate_btn = gr.Button("Generate")
with gr.Column():
output_rgb = gr.Image(interactive=False, label="Output RGB image")
output_ccm = gr.Image(interactive=False, label="Output CCM image")
output_glb = gr.Model3D(label="Output GLB", interactive=False)
# Connect the button click event
generate_btn.click(
fn=generate,
inputs=[input_image, bg_choice, fg_ratio, bg_color, seed_val, guidance, steps],
outputs=[output_rgb, output_ccm, output_glb],
concurrency_limit=1
)
# Add examples without caching
gr.Examples(
examples=[[os.path.join("examples", i)] for i in os.listdir("examples")],
inputs=input_image,
cache_examples=False # Disable example caching
)
# Launch with Spaces-specific settings
if __name__ == "__main__":
import os
from spaces.zero.gradio import launch # Use Spaces specific launch function
if os.environ.get("SPACE_ID") is not None: # We're running on Hugging Face Spaces
launch(
demo,
server_name="0.0.0.0",
server_port=7860,
show_error=True,
enable_queue=True,
max_threads=1,
api_name=None, # Disable API endpoint generation
share=False, # Don't use share on Spaces
prevent_thread_lock=True # Prevent thread lock issues
)
else: # Local development
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
share=True, # Only use share=True for local development
api_name=None # Disable API endpoint
) |