Spaces:
Sleeping
Sleeping
File size: 30,560 Bytes
6785135 b78d4d3 94b55f0 a246b15 5697c10 a246b15 5697c10 6785135 94b55f0 602d806 527f685 602d806 89cecf3 3649694 602d806 5dfd724 9b1e831 9c66171 6785135 b78d4d3 6785135 b78d4d3 6785135 b78d4d3 b9c715a 9b1e831 b78d4d3 9b1e831 5697c10 b78d4d3 5697c10 b78d4d3 e7f8afe 9b1e831 9c66171 b78d4d3 5697c10 b78d4d3 5697c10 b78d4d3 6efb913 73f30e5 b78d4d3 ec28a2a b78d4d3 5697c10 d356357 5697c10 0d01d71 b78d4d3 5697c10 ec28a2a 5697c10 9b1e831 602d806 068f2e8 602d806 9b1e831 602d806 a2d6d06 5697c10 602d806 9c66171 602d806 5697c10 b78d4d3 5697c10 b78d4d3 5697c10 6e4c2c5 455a0a2 6e4c2c5 455a0a2 6e4c2c5 d4756f5 6e4c2c5 b78d4d3 6785135 b78d4d3 1b5281e 5697c10 e93ac53 1b5281e e93ac53 5697c10 e93ac53 5697c10 b78d4d3 5697c10 b78d4d3 602d806 b78d4d3 5697c10 6785135 0d01d71 e0694d7 b78d4d3 6e4c2c5 d2d9d26 6e4c2c5 1b5281e 6e4c2c5 1b5281e 6e4c2c5 1b89ce2 6e4c2c5 1b5281e 6e4c2c5 15793df 6e4c2c5 6785135 b78d4d3 6785135 b78d4d3 6e4c2c5 b78d4d3 1b5281e 834e79b 40e26e1 6785135 b78d4d3 40e26e1 b78d4d3 6785135 e93ac53 b78d4d3 6785135 6e4c2c5 1b5281e 6e4c2c5 d88ef28 1b5281e 6e4c2c5 6785135 c72304b b78d4d3 6785135 b78d4d3 6785135 b78d4d3 6e4c2c5 b78d4d3 6785135 1b5281e 6785135 b78d4d3 1b5281e b2375ab 1b5281e 6e4c2c5 b78d4d3 6785135 b78d4d3 6785135 82b43ed 6785135 b78d4d3 6e4c2c5 b78d4d3 6785135 384ff8b 6785135 82b43ed 6785135 82b43ed 384ff8b 7227c5c 384ff8b 6785135 40e26e1 6785135 40e26e1 6785135 82b43ed 1b5281e 82b43ed 1b5281e 82b43ed 6785135 82b43ed 6785135 82b43ed 6785135 82b43ed 6785135 82b43ed 6785135 45d4aa4 6785135 0a4c43d 45d4aa4 82b43ed 6785135 15793df 45d4aa4 6785135 82b43ed 384ff8b 6785135 0a4c43d 82b43ed 6785135 82b43ed 6785135 82b43ed 6785135 82b43ed 6785135 e0694d7 82b43ed 6785135 82b43ed 834e79b 82b43ed 6785135 15793df e0694d7 1b5281e 82b43ed 6785135 82b43ed 1b5281e 82b43ed b78d4d3 6785135 b78d4d3 1b5281e b78d4d3 1b5281e b78d4d3 6785135 b78d4d3 6785135 0a4c43d b78d4d3 d88ef28 b78d4d3 d9a76ec 6785135 b78d4d3 1b5281e d9a76ec b78d4d3 1b5281e d9a76ec b78d4d3 6785135 0a4c43d b78d4d3 3ee92f0 b78d4d3 6785135 b78d4d3 6e4c2c5 1b5281e b78d4d3 0a4c43d b78d4d3 0a4c43d b78d4d3 6785135 6e4c2c5 6785135 b78d4d3 602d806 5697c10 b78d4d3 6785135 5697c10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
# app.py — ColPali + MCP (search-only) + GPT-5 follow-up responses
# Images are injected by the app in new calls; no base64 is passed through MCP.
import os
import base64
import tempfile
from io import BytesIO
from urllib.request import urlretrieve
from typing import List, Tuple, Dict, Any, Optional
import gradio as gr
from gradio_pdf import PDF
import torch
from pdf2image import convert_from_path
from PIL import Image
from torch.utils.data import DataLoader
from tqdm import tqdm
from colpali_engine.models import ColQwen2, ColQwen2Processor
# Streaming Responses API
from openai import OpenAI
# =============================
# Globals & Config
# =============================
api_key_env = os.getenv("OPENAI_API_KEY", "").strip()
ds: List[torch.Tensor] = [] # page embeddings
images: List[Image.Image] = [] # PIL images in page order
current_pdf_path: Optional[str] = None
device_map = (
"cuda:0"
if torch.cuda.is_available()
else ("mps" if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available() else "cpu")
)
# =============================
# Load Model & Processor
# =============================
model = ColQwen2.from_pretrained(
"vidore/colqwen2-v1.0",
torch_dtype=torch.bfloat16,
device_map=device_map,
attn_implementation="flash_attention_2",
).eval()
processor = ColQwen2Processor.from_pretrained("vidore/colqwen2-v1.0")
# =============================
# Utilities
# =============================
def _ensure_model_device() -> str:
dev = (
"cuda:0"
if torch.cuda.is_available()
else ("mps" if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available() else "cpu")
)
if str(model.device) != dev:
model.to(dev)
return dev
def encode_image_to_base64(image: Image.Image) -> str:
"""Encodes a PIL image to base64 (JPEG)."""
buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
# =============================
# Indexing Helpers
# =============================
def convert_files(pdf_path: str) -> List[Image.Image]:
"""Convert a single PDF path into a list of PIL Images (pages)."""
imgs = convert_from_path(pdf_path, thread_count=4)
if len(imgs) >= 800:
raise gr.Error("The number of images in the dataset should be less than 800.")
return imgs
def index_gpu(imgs: List[Image.Image]) -> str:
"""Embed a list of images (pages) with ColQwen2 (ColPali) and store in globals."""
global ds, images
device = _ensure_model_device()
# reset previous dataset
ds = []
images = imgs
dataloader = DataLoader(
images,
batch_size=4,
shuffle=False,
collate_fn=lambda x: processor.process_images(x).to(model.device),
)
for batch_doc in tqdm(dataloader, desc="Indexing pages"):
with torch.no_grad():
batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
embeddings_doc = model(**batch_doc)
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
return f"Indexed {len(images)} pages successfully."
def index_from_path(pdf_path: str) -> str:
imgs = convert_files(pdf_path)
return index_gpu(imgs)
def index_from_url(url: str) -> Tuple[str, str]:
"""
Download a PDF from URL and index it.
Returns: (status_message, saved_pdf_path)
"""
tmp_dir = tempfile.mkdtemp(prefix="colpali_")
local_path = os.path.join(tmp_dir, "document.pdf")
urlretrieve(url, local_path)
status = index_from_path(local_path)
return status, local_path
def query_gpt(query: str, retrieved_images: list[tuple[Image.Image, str]]) -> str:
"""Calls OpenAI's GPT model with the query and image data."""
if api_key_env and api_key_env.startswith("sk"):
try:
base64_images = [encode_image_to_base64(im_caption[0]) for im_caption in retrieved_images]
client = OpenAI(api_key=api_key_env)
PROMPT = """
You are a smart assistant designed to answer questions about a PDF document.
You are given relevant information in the form of PDF pages. Use them to construct a short response to the question, and cite your sources (page numbers, etc).
If it is not possible to answer using the provided pages, do not attempt to provide an answer and simply say the answer is not present within the documents.
Give detailed and extensive answers, only containing info in the pages you are given.
You can answer using information contained in plots and figures if necessary.
Answer in the same language as the query.
Query: {query}
PDF pages:
""".strip()
response = client.responses.create(
model="gpt-5-mini",
input=[
{
"role": "user",
"content": (
[{"type": "input_text", "text": PROMPT.format(query=query)}] +
[{"type": "input_image",
"image_url": f"data:image/jpeg;base64,{im}"}
for im in base64_images]
)
}
],
# max_tokens=500,
)
return response.output_text
except Exception as e:
print(e)
return "OpenAI API connection failure. Verify that OPENAI_API_KEY is set and valid (sk-***)."
return "Set OPENAI_API_KEY in your environment to get a custom response."
# =============================
# Local Search (ColPali)
# =============================
def image_search(query: str, k: int = 5) -> List[int]:
"""
Search within a PDF document for the most relevant pages to answer a query and return the page indexes as a list.
MCP tool description:
- name: visual_deepsearch_image_search
- description: Search within a PDF document for the most relevant pages to answer a query.
- input_schema:
type: object
properties:
query: {type: string, description: "User query in natural language."}
k: {type: integer, minimum: 1, maximum: 10, default: 5. description: "Number of top pages to retrieve."}
required: ["query"]
Args:
query (str): Natural-language question to search for.
k (int): Number of top results to return (1–10).
Returns:
indices (List[int]): Indices of the k most relevant pages
"""
global ds, images
if not images or not ds:
return []
k = max(1, min(int(k), len(images)))
device = _ensure_model_device()
with torch.no_grad():
batch_query = processor.process_queries([query]).to(model.device)
embeddings_query = model(**batch_query)
q_vecs = list(torch.unbind(embeddings_query.to("cpu")))
scores = processor.score(q_vecs, ds, device=device)
top_k_indices = scores[0].topk(k).indices.tolist()
print("[search]", query, top_k_indices)
return top_k_indices
def search_synthetize(query: str, k: int = 5) -> List[int]:
"""
Search within a PDF document for the most relevant pages to answer a query and synthetizes a short grounded answer using only those pages.
MCP tool description:
- name: visual_deepsearch_search_synthetize
- description: Search within a PDF document for the most relevant pages to answer a query and synthetizes a short grounded answer using only those pages.
- input_schema:
type: object
properties:
query: {type: string, description: "User query in natural language."}
k: {type: integer, minimum: 1, maximum: 20, default: 5. description: "Number of top pages to retrieve."}
required: ["query"]
Args:
query (str): Natural-language question to search for.
k (int): Number of top results to return (1–10).
Returns:
ai_response (str): Text answer to the query grounded in content from the PDF, with citations (page numbers).
"""
top_k_indices = image_search(query, k)
expanded = set(top_k_indices)
for i in top_k_indices:
expanded.add(i - 1)
expanded.add(i + 1)
expanded = {i for i in expanded if 0 <= i < len(images)}
expanded = sorted(expanded)
expanded = expanded if len(expanded) < 20 else sorted(top_k_indices)
# Build gallery results with 1-based page numbering
results = []
for idx in expanded:
page_num = idx + 1
results.append((images[idx], f"Page {page_num}"))
# Generate grounded response
print("[waiting for ai response]", query)
ai_response = query_gpt(query, results)
print("[search_synthetize]", ai_response)
return ai_response
def _build_image_parts_from_indices(indices: List[int]) -> List[Dict[str, Any]]:
"""Turn page indices into OpenAI vision content parts."""
parts: List[Dict[str, Any]] = []
seen = sorted({i for i in indices if 0 <= i < len(images)})
for idx in seen:
b64 = encode_image_to_base64(images[idx])
parts.append({
"type": "input_image",
"image_url": f"data:image/jpeg;base64,{b64}",
})
return parts
# =============================
# Agent System Prompt
# =============================
SYSTEM1 = (
"""
You are a PDF research agent with a single tool: visual_deepsearch_image_search(query: string, k: int).
Act iteratively:
1) If you are given images, analyze the images received to find information you were looking for. If you are condident that you have all the information needed for a complete response, provide a final answer. Most often, you should run new search calls using the tool to find additional missing information.
2) To run new searches, split the query into 1–3 focused sub-queries. You can use the potentially provided page images to help you ask relevant followup queries. Subqueries should be asked as natural language questions, not just keywords.
3) For each sub-query, call visual_deepsearch_image_search (k=5 by default; increase to up to 10 if you need to go deep).
4) You will receive the output of visual_deepsearch_image_search as a list of indices corresponding to page numbers. Print the page numbers out and stop generating. An external system will take over and convert the indices into image for you.
5) Back to step 1. Analyze the images received to find information you were looking for. If you are condident that you have all the information needed for a complete response, provide a final answer. Otherwise run new search calls using the tool to find additional missing information.
Workflow:
• Use ONLY the provided images for grounding and cite as (p.<page>).
• If an answer is not present, say “Not found in the provided pages.”
• Never do more than three rounds of refinement. If you are past round 3, it's time to gaher all information and produce the final answer if you haven't done so yet.
Deliverable:
• Return a clear, standalone Markdown answer in the user's language. Include concise tables for lists of dates/items when useful, and cite the page numbers used for each fact.
"""
).strip()
SYSTEM2 = """
You are a PDF research agent with a single tool: visual_deepsearch_search_synthetize(query: string, k: int).
Act iteratively:
1) Split the user question into 1–4 focused sub-queries. Subqueries should be asked as natural language questions, not just keywords.
2) For each sub-query, call visual_deepsearch_search_synthetize (k=5 by default; increase to up to 20 if you need to go deep).
3) Stop early when confident; otherwise refine and repeat, up to 4 iterations and 20 searches in total. If info is missing, try to continue searching using new keywords and queries.
Grounding & citations:
• Use ONLY information from retrieved pages.
• After any claim, cite the page as (p.<page>).
• If an answer is not present, say “Not found in the provided pages.”
Final deliverable (must be clear and standalone):
• Write a detailed answer in Markdown that directly addresses the user request in the request language.
• If dates or items are requested, include a concise table with the requested fields.
• Do not refer to “the above” or “previous messages”.
"""
# =============================
# MCP config (search-only)
# =============================
DEFAULT_MCP_SERVER_URL = "https://manu-visual-deepsearch.hf.space/gradio_api/mcp/"
DEFAULT_MCP_SERVER_LABEL = "colpali_rag"
# =============================
# Streaming Agent (multi-round with previous_response_id)
# =============================
def stream_agent(question: str,
api_key: str,
model_name: str,
server_url: str,
server_label: str,
visual_reasoning: str):
"""
Multi-round streaming:
• Seed: optional local ColPali search on the user question to attach initial pages.
• Each round: open a GPT-5 stream with *attached images* (if any).
• If the model calls the tool and returns indices, we end the stream and
start a NEW API call with previous_response_id + the requested pages attached.
"""
# Optional seeding: attach some likely pages on round 1
try:
seed_indices = image_search(question, k=5) if visual_reasoning == "Seeded Visual Reasoning" else []
except Exception as e:
yield f"❌ Search failed: {e}", "", ""
return
visual_reasoning: bool = True if "Visual Reasoning" in visual_reasoning else False
allowed_tools = "visual_deepsearch_image_search" if visual_reasoning else "visual_deepsearch_search_synthetize"
SYSTEM= SYSTEM1 if visual_reasoning else SYSTEM2
if not api_key:
yield "⚠️ **Please provide your OpenAI API key.**", "", ""
return
if not images or not ds:
yield "⚠️ **Index a PDF first in tab 1.**", "", ""
return
client = OpenAI(api_key=api_key)
log_lines = ["Log", f"[seed] indices={seed_indices}"]
prev_response_id: Optional[str] = None
# MCP tool routing (search-only)
tools = [{
"type": "mcp",
"server_label": server_label or DEFAULT_MCP_SERVER_LABEL,
"server_url": server_url or DEFAULT_MCP_SERVER_URL,
"allowed_tools": [allowed_tools],
"require_approval": "never",
}]
# Shared mutable state for each round
round_state: Dict[str, Any] = {
"last_search_indices": [],
"final_text": "",
"summary_text": "",
}
def run_round(round_idx: int, attached_indices: List[int]):
"""
Stream one round. If tool results (indices) arrive, store them in round_state["last_search_indices"].
"""
nonlocal prev_response_id
round_state["last_search_indices"] = []
round_state["final_text"] = "" # reset final text
# round_state["summary_text"] = ""
# Build the user content for this round
parts: List[Dict[str, Any]] = []
if round_idx == 1:
parts.append({"type": "input_text", "text": question})
elif round_idx < 5:
parts.append({"type": "input_text", "text": f"Continue reasoning with the newly attached pages which are from round {round_idx}. Ground your answer in these images, or query for new pages with the search tool if you are in round 3 or less. Otherwise, write your final answer."})
else:
parts.append({"type": "input_text", "text": f"Time to produce the final answer grounded in the pages. Do not use the tool and query for new pages."})
parts += _build_image_parts_from_indices(attached_indices)
# if attached_indices:
# pages_str = ", ".join(str(i + 1) for i in sorted(set(attached_indices)))
# parts.append({"type": "input_text", "text": f"(Attached pages from round {round_idx}: {pages_str}). Ground your answer in these images, or query for new pages."})
# First call includes system; follow-ups use previous_response_id
if prev_response_id:
req_input = [{"role": "user", "content": parts}]
else:
req_input = [
{"role": "system", "content": SYSTEM},
{"role": "user", "content": parts},
]
req_kwargs = dict(
model=model_name,
input=req_input,
reasoning={"effort": "medium", "summary": "auto"},
tools=tools,
store=True,
)
if prev_response_id:
req_kwargs["previous_response_id"] = prev_response_id
# Helper: parse a JSON array of ints from tool result text
def _maybe_parse_indices(chunk: str) -> List[int]:
import json, re
arrs = re.findall(r'\[[^\]]*\]', chunk)
for s in reversed(arrs):
try:
val = json.loads(s)
if isinstance(val, list) and all(isinstance(x, int) for x in val):
return sorted({x for x in val if 0 <= x < len(images)})
except Exception:
pass
return []
tool_result_buffer = "" # accumulate tool result deltas
try:
with client.responses.stream(**req_kwargs) as stream:
for event in stream:
etype = getattr(event, "type", "")
if etype == "response.output_text.delta":
round_state["final_text"] += event.delta
yield round_state["final_text"] or " ", round_state["summary_text"] or " ", "\n".join(log_lines[-400:])
elif etype == "response.reasoning_summary_text.delta":
round_state["summary_text"] += event.delta
yield round_state["final_text"] or " ", round_state["summary_text"] or " ", "\n".join(log_lines[-400:])
# Log tool call argument deltas (optional)
elif etype in ("response.mcp_call_arguments.delta", "response.tool_call_arguments.delta"):
delta = getattr(event, "delta", None)
if delta:
log_lines.append("[call] " + str(delta))
round_state["summary_text"] += "\nQuery call: " + event.delta + "\n"
yield round_state["final_text"] or " ", round_state["summary_text"] or " ", "\n".join(log_lines[-400:])
# Capture tool RESULT text and try to parse indices
elif etype.startswith("response.output_item.done") and visual_reasoning:
delta_text = getattr(event.item, "output", "")
if delta_text:
tool_result_buffer += str(delta_text)
parsed_now = _maybe_parse_indices(tool_result_buffer)
if parsed_now:
round_state["last_search_indices"] += parsed_now
log_lines.append(f"[tool-result] indices={parsed_now}")
yield round_state["final_text"] or " ", round_state["summary_text"] or " ", "\n".join(log_lines[-400:])
else:
print(etype)
# Finalize this response; remember ID for follow-ups
_final = stream.get_final_response()
try:
prev_response_id = getattr(_final, "id", None)
except Exception:
prev_response_id = None
# Emit one last update after stream ends
yield round_state["final_text"] or " ", round_state["summary_text"] or " ", "\n".join(log_lines[-400:])
except Exception as e:
log_lines.append(f"[round {round_idx}] stream error: {e}")
yield f"❌ {e}", round_state["summary_text"] or "", "\n".join(log_lines[-400:])
return
# Controller: iterate rounds; if the model searched, attach those pages next
max_rounds = 5
round_idx = 1
pending_indices = list(seed_indices)
while round_idx <= max_rounds:
print("Round ", round_idx, ", Indices: ", pending_indices)
for final_md, summary_md, log_md in run_round(round_idx, pending_indices):
yield final_md, summary_md, log_md
# If the model returned indices via the tool, use them in a fresh call
next_indices = round_state.get("last_search_indices") or []
if next_indices and visual_reasoning:
# Neighbor expansion for context
base = set(next_indices)
expanded = set(base)
for i in base:
expanded.add(i - 1)
expanded.add(i + 1)
expanded = {i for i in expanded if 0 <= i < len(images)}
pending_indices = sorted(expanded) if len(expanded) < 20 else sorted(base)
round_idx += 1
continue
# No further tool-driven retrieval → done
break
print("Search Finished")
return
# =============================
# Gradio UI
# =============================
CUSTOM_CSS = """
:root {
--bg: #0e1117;
--panel: #111827;
--accent: #7c3aed;
--accent-2: #06b6d4;
--text: #e5e7eb;
--muted: #9ca3af;
--border: #1f2937;
}
.gradio-container {max-width: 1180px !important; margin: 0 auto !important;}
body {background: radial-gradient(1200px 600px at 20% -10%, rgba(124,58,237,.25), transparent 60%),
radial-gradient(1000px 500px at 120% 10%, rgba(6,182,212,.2), transparent 60%),
var(--bg) !important;}
.app-header {
display:flex; gap:16px; align-items:center; padding:20px 18px; margin:8px 0 12px;
border:1px solid var(--border); border-radius:20px;
background: linear-gradient(180deg, rgba(255,255,255,.02), rgba(255,255,255,.01));
box-shadow: 0 10px 30px rgba(0,0,0,.25), inset 0 1px 0 rgba(255,255,255,.05);
}
.app-header .icon {
width:48px; height:48px; display:grid; place-items:center; border-radius:14px;
background: linear-gradient(135deg, var(--accent), var(--accent-2));
color:white; font-size:26px;
}
.app-header h1 {font-size:22px; margin:0; color:var(--text); letter-spacing:.2px;}
.app-header p {margin:2px 0 0; color:var(--muted); font-size:14px;}
.card {
border:1px solid var(--border); border-radius:18px; padding:14px 16px;
background: linear-gradient(180deg, rgba(255,255,255,.02), rgba(255,255,255,.01));
box-shadow: 0 12px 28px rgba(0,0,0,.18), inset 0 1px 0 rgba(255,255,255,.04);
}
.gr-button-primary {border-radius:12px !important; font-weight:600;}
.gradio-container .tabs {border-radius:16px; overflow:hidden; border:1px solid var(--border);}
.markdown-wrap {min-height: 260px;}
.summary-wrap {min-height: 180px;}
.gr-markdown, .gr-prose { color: var(--text) !important; }
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3 {color: #f3f4f6;}
.gr-markdown a {color: var(--accent-2); text-decoration: none;}
.gr-markdown a:hover {text-decoration: underline;}
.gr-markdown table {width: 100%; border-collapse: collapse; margin: 10px 0 16px;}
.gr-markdown th, .gr-markdown td {border: 1px solid var(--border); padding: 8px 10px;}
.gr-markdown th {background: rgba(255,255,255,.03);}
.gr-markdown pre, .gr-markdown code { background: #0b1220; color: #eaeaf0; border-radius: 12px; border: 1px solid #172036; }
.gr-markdown pre {padding: 12px 14px; overflow:auto;}
.gr-markdown blockquote { border-left: 4px solid var(--accent); padding: 6px 12px; margin: 8px 0; color: #d1d5db; background: rgba(124,58,237,.06); border-radius: 8px; }
.log-box { font-family: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace; white-space: pre-wrap; color: #d1d5db; background:#0b1220; border:1px solid #172036; border-radius:14px; padding:12px; max-height:280px; overflow:auto; }
"""
def build_ui():
theme = gr.themes.Soft()
with gr.Blocks(title="ColPali Agentic RAG", theme=theme, css=CUSTOM_CSS) as demo:
gr.HTML(
"""
<div class="app-header">
<div class="icon">📚</div>
<div>
<h1>ColPali PDF Search + GPT5 Agent</h1>
<p>Index PDFs with ColQwen2. The agent uses the search tool through MCP. The search tool returns either textual summaries or images by reference which are attached to conversation in follow-up GPT-5 calls.</p>
</div>
</div>
"""
)
# ---- Tab 1: Index & Preview
with gr.Tab("1) Index & Preview"):
with gr.Row():
with gr.Column(scale=1):
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
index_btn = gr.Button("📥 Index Uploaded PDF", variant="secondary")
url_box = gr.Textbox(
label="Or index from URL",
placeholder="https://example.com/file.pdf",
value="",
)
index_url_btn = gr.Button("🌐 Load From URL", variant="secondary")
status_box = gr.Textbox(label="Status", interactive=False)
with gr.Column(scale=2):
pdf_view = PDF(label="PDF Preview")
# wiring
def handle_upload(file):
global current_pdf_path
if file is None:
return "Please upload a PDF.", None
path = getattr(file, "name", file)
status = index_from_path(path)
current_pdf_path = path
return status, path
def handle_url(url: str):
global current_pdf_path
if not url or not url.lower().endswith(".pdf"):
return "Please provide a direct PDF URL ending in .pdf", None
status, path = index_from_url(url)
current_pdf_path = path
return status, path
index_btn.click(handle_upload, inputs=[pdf_input], outputs=[status_box, pdf_view])
index_url_btn.click(handle_url, inputs=[url_box], outputs=[status_box, pdf_view])
# ---- Tab 2: Ask (Direct — returns indices)
with gr.Tab("2) Direct Search"):
with gr.Row():
with gr.Column(scale=1):
query_box = gr.Textbox(placeholder="Enter your question…", label="Query", lines=4)
k_slider = gr.Slider(minimum=1, maximum=20, step=1, label="Number of results (k)", value=5)
search_button = gr.Button("🔍 Search", variant="primary")
search_synthetize_button = gr.Button("🔍 Search & Synthetize", variant="primary")
with gr.Column(scale=2):
output_docs = gr.Textbox(label="Indices", lines=1, placeholder="[0, 1, 2, ...]")
output_text = gr.Textbox(label="ColQwen+GPT-5 Answer", lines=12, placeholder="...")
search_button.click(image_search, inputs=[query_box, k_slider], outputs=[output_docs])
search_synthetize_button.click(search_synthetize, inputs=[query_box, k_slider], outputs=[output_text])
# ---- Tab 3: Agent (Streaming)
with gr.Tab("3) Deep Search"):
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Group():
question = gr.Textbox(
label="Your question",
placeholder="Enter your question…",
lines=8,
elem_classes=["card"],
)
run_btn = gr.Button("Run", variant="primary")
with gr.Accordion("Connection & Model", open=False, elem_classes=["card"]):
with gr.Row():
api_key_box = gr.Textbox(
label="OpenAI API Key",
placeholder="sk-...",
type="password",
value=api_key_env,
)
model_box = gr.Dropdown(
label="Model",
choices=["gpt-5", "gpt-5-mini", "gpt-5-nano"],
value="gpt-5",
)
with gr.Row():
server_url_box = gr.Textbox(
label="MCP Server URL (search-only)",
value=DEFAULT_MCP_SERVER_URL,
)
server_label_box = gr.Textbox(
label="MCP Server Label",
value=DEFAULT_MCP_SERVER_LABEL,
)
with gr.Row():
visual_reasoning_box = gr.Dropdown(
label="Reasoning Mode",
choices=["Visual Reasoning", "Seeded Visual Reasoning", "Visual Summary Reasoning"],
value="Visual Summary Reasoning",
)
with gr.Column(scale=3):
with gr.Tab("Answer"):
final_md = gr.Markdown(value="", elem_classes=["card", "markdown-wrap"])
with gr.Tab("Live Reasoning"):
summary_md = gr.Markdown(value="", elem_classes=["card", "summary-wrap"])
with gr.Tab("Event Log"):
log_md = gr.Markdown(value="", elem_classes=["card", "log-box"])
run_btn.click(
stream_agent,
inputs=[
question,
api_key_box,
model_box,
server_url_box,
server_label_box,
visual_reasoning_box
],
outputs=[final_md, summary_md, log_md],
)
return demo
if __name__ == "__main__":
demo = build_ui()
# mcp_server=True exposes this app's MCP endpoint at /gradio_api/mcp/
# We keep the MCP server available, but the agent never uses MCP to pass images.
demo.queue(max_size=5).launch(debug=True, mcp_server=True)
|