Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -125,6 +125,18 @@ def index_from_url(url: str) -> Tuple[str, str]:
|
|
125 |
return status, local_path
|
126 |
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
# =============================
|
129 |
# MCP Tools
|
130 |
# =============================
|
@@ -176,46 +188,6 @@ def search(query: str, k: int = 5) -> List[int]:
|
|
176 |
return sorted(expanded)
|
177 |
|
178 |
|
179 |
-
def get_pages(indices: List[int]) -> Dict[str, Any]:
|
180 |
-
"""
|
181 |
-
Return page images (as data URLs) for the given 0-based indices.
|
182 |
-
|
183 |
-
MCP tool description:
|
184 |
-
- name: mcp_test_get_pages
|
185 |
-
- description: Given 0-based indices from mcp_test_search, return the corresponding page images as data URLs for vision reasoning.
|
186 |
-
- input_schema:
|
187 |
-
type: object
|
188 |
-
properties:
|
189 |
-
indices: {
|
190 |
-
type: array,
|
191 |
-
items: { type: integer, minimum: 0 },
|
192 |
-
description: "0-based page indices to fetch",
|
193 |
-
}
|
194 |
-
required: ["indices"]
|
195 |
-
|
196 |
-
Returns:
|
197 |
-
{"images": [{"index": int, "page": int, "image_url": str}], "count": int}
|
198 |
-
"""
|
199 |
-
global images
|
200 |
-
indices = eval(indices)
|
201 |
-
print("indices to get", indices)
|
202 |
-
|
203 |
-
if not images:
|
204 |
-
return {"images": [], "count": 0}
|
205 |
-
|
206 |
-
uniq = sorted({i for i in indices if 0 <= i < len(images)})
|
207 |
-
payload = []
|
208 |
-
for idx in uniq:
|
209 |
-
im = images[idx]
|
210 |
-
b64 = encode_image_to_base64(im)
|
211 |
-
payload.append({
|
212 |
-
"index": idx,
|
213 |
-
"page": idx + 1,
|
214 |
-
"image_url": f"data:image/jpeg;base64,{b64}",
|
215 |
-
})
|
216 |
-
return {"images": payload, "count": len(payload)}
|
217 |
-
|
218 |
-
|
219 |
# =============================
|
220 |
# Gradio UI — Unified App
|
221 |
# =============================
|
@@ -228,7 +200,7 @@ You are a PDF research agent with two tools:
|
|
228 |
|
229 |
Policy & procedure:
|
230 |
1) Break the user task into 1–4 targeted sub-queries (in English).
|
231 |
-
2) For each sub-query, call mcp_test_search to get indices;
|
232 |
3) Continue reasoning using ONLY the provided images. If info is insufficient, iterate: refine sub-queries and call the tools again. You may make further tool calls later in the conversation as needed.
|
233 |
|
234 |
Grounding & citations:
|
@@ -269,6 +241,7 @@ def stream_agent(question: str,
|
|
269 |
|
270 |
client = OpenAI(api_key=api_key)
|
271 |
|
|
|
272 |
tools = [{
|
273 |
"type": "mcp",
|
274 |
"server_label": server_label or DEFAULT_MCP_SERVER_LABEL,
|
@@ -277,43 +250,128 @@ def stream_agent(question: str,
|
|
277 |
"require_approval": require_approval or "never",
|
278 |
}]
|
279 |
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
|
318 |
|
319 |
CUSTOM_CSS = """
|
@@ -434,11 +492,8 @@ def build_ui():
|
|
434 |
|
435 |
with gr.Column(scale=2):
|
436 |
output_text = gr.Textbox(label="Indices (0-based)", lines=12, placeholder="[0, 1, 2, ...]")
|
437 |
-
output_payload = gr.Textbox(label="Indices (0-based)", lines=12, placeholder="[0, 1, 2, ...]")
|
438 |
-
|
439 |
|
440 |
search_button.click(search, inputs=[query_box, k_slider], outputs=[output_text])
|
441 |
-
get_pages_button.click(get_pages, inputs=[output_text], outputs=[output_payload])
|
442 |
|
443 |
with gr.Tab("3) Agent (Streaming)"):
|
444 |
with gr.Row(equal_height=True):
|
|
|
125 |
return status, local_path
|
126 |
|
127 |
|
128 |
+
def _build_image_parts_from_indices(indices: List[int]) -> List[Dict[str, Any]]:
|
129 |
+
"""Turn page indices into OpenAI vision content parts."""
|
130 |
+
parts: List[Dict[str, Any]] = []
|
131 |
+
seen = sorted({i for i in indices if 0 <= i < len(images)})
|
132 |
+
for idx in seen:
|
133 |
+
b64 = encode_image_to_base64(images[idx])
|
134 |
+
parts.append({
|
135 |
+
"type": "input_image",
|
136 |
+
"image_url": f"data:image/jpeg;base64,{b64}",
|
137 |
+
})
|
138 |
+
return parts
|
139 |
+
|
140 |
# =============================
|
141 |
# MCP Tools
|
142 |
# =============================
|
|
|
188 |
return sorted(expanded)
|
189 |
|
190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
# =============================
|
192 |
# Gradio UI — Unified App
|
193 |
# =============================
|
|
|
200 |
|
201 |
Policy & procedure:
|
202 |
1) Break the user task into 1–4 targeted sub-queries (in English).
|
203 |
+
2) For each sub-query, call mcp_test_search to get indices; Once you receive the indices to use, print "Received" and stop generating. Images will be injected in your stream.
|
204 |
3) Continue reasoning using ONLY the provided images. If info is insufficient, iterate: refine sub-queries and call the tools again. You may make further tool calls later in the conversation as needed.
|
205 |
|
206 |
Grounding & citations:
|
|
|
241 |
|
242 |
client = OpenAI(api_key=api_key)
|
243 |
|
244 |
+
prev_response_id: Optional[str] = None
|
245 |
tools = [{
|
246 |
"type": "mcp",
|
247 |
"server_label": server_label or DEFAULT_MCP_SERVER_LABEL,
|
|
|
250 |
"require_approval": require_approval or "never",
|
251 |
}]
|
252 |
|
253 |
+
# seed pages once (optional)
|
254 |
+
seed_indices = search(question, k=5) or []
|
255 |
+
pending_indices = list(seed_indices)
|
256 |
+
|
257 |
+
def run_round(round_idx: int, attached_indices: List[int]):
|
258 |
+
nonlocal prev_response_id
|
259 |
+
assembled_text = ""
|
260 |
+
assembled_summary = ""
|
261 |
+
# Will hold the most recent indices returned by mcp_test_search in THIS stream
|
262 |
+
last_search_indices: List[int] = []
|
263 |
+
|
264 |
+
# Build user parts (attach any seed pages we already have)
|
265 |
+
parts: List[Dict[str, Any]] = [{"type": "input_text", "text": question if round_idx == 1 else "Continue with new pages."}]
|
266 |
+
parts += _build_image_parts_from_indices(attached_indices)
|
267 |
+
|
268 |
+
# First call includes system; follow-ups use previous_response_id
|
269 |
+
if prev_response_id:
|
270 |
+
req_input = [{"role": "user", "content": parts}]
|
271 |
+
else:
|
272 |
+
req_input = [
|
273 |
+
{"role": "system", "content": SYSTEM},
|
274 |
+
{"role": "user", "content": parts},
|
275 |
+
]
|
276 |
+
|
277 |
+
req_kwargs = dict(
|
278 |
+
model=model_name,
|
279 |
+
input=req_input,
|
280 |
+
reasoning={"effort": "medium", "summary": "auto"},
|
281 |
+
tools=tools,
|
282 |
+
store=True,
|
283 |
+
)
|
284 |
+
if prev_response_id:
|
285 |
+
req_kwargs["previous_response_id"] = prev_response_id
|
286 |
+
|
287 |
+
# Helper to try extracting a JSON int array from tool result text
|
288 |
+
def _maybe_parse_indices(chunk: str) -> List[int]:
|
289 |
+
import json, re
|
290 |
+
# Find the last bracketed JSON array in the chunk
|
291 |
+
arrs = re.findall(r'\[[^\]]*\]', chunk)
|
292 |
+
for s in reversed(arrs):
|
293 |
+
try:
|
294 |
+
val = json.loads(s)
|
295 |
+
if isinstance(val, list) and all(isinstance(x, int) for x in val):
|
296 |
+
return sorted({x for x in val if isinstance(x, int)})
|
297 |
+
except Exception:
|
298 |
+
pass
|
299 |
+
return []
|
300 |
+
|
301 |
+
tool_result_buffer = "" # accumulate tool result deltas
|
302 |
+
|
303 |
+
try:
|
304 |
+
with client.responses.stream(**req_kwargs) as stream:
|
305 |
+
for event in stream:
|
306 |
+
etype = getattr(event, "type", "")
|
307 |
+
|
308 |
+
if etype == "response.output_text.delta":
|
309 |
+
assembled_text += event.delta
|
310 |
+
yield assembled_text or " ", assembled_summary or " ", "\n".join(log_lines[-400:])
|
311 |
+
|
312 |
+
elif etype == "response.reasoning_summary_text.delta":
|
313 |
+
assembled_summary += event.delta
|
314 |
+
yield assembled_text or " ", assembled_summary or " ", "\n".join(log_lines[-400:])
|
315 |
+
|
316 |
+
# Capture tool *arguments* in the log for transparency (optional)
|
317 |
+
elif etype in ("response.function_call_arguments.delta", "response.tool_call_arguments.delta"):
|
318 |
+
log_lines.append(str(event.delta))
|
319 |
+
|
320 |
+
# ⬇️ NEW: capture tool *results* (indices JSON) from MCP
|
321 |
+
elif etype.startswith("response.tool_result"):
|
322 |
+
# Different SDKs expose .delta or .output_text; handle both
|
323 |
+
delta = getattr(event, "delta", "") or getattr(event, "output_text", "")
|
324 |
+
if delta:
|
325 |
+
tool_result_buffer += str(delta)
|
326 |
+
# opportunistic parse so UI can progress early
|
327 |
+
parsed_now = _maybe_parse_indices(tool_result_buffer)
|
328 |
+
if parsed_now:
|
329 |
+
print(parsed_now)
|
330 |
+
last_search_indices = parsed_now
|
331 |
+
log_lines.append(f"[tool-result] indices={last_search_indices}")
|
332 |
+
yield assembled_text or " ", assembled_summary or " ", "\n".join(log_lines[-400:])
|
333 |
+
|
334 |
+
# Finalize, remember response id for follow-ups
|
335 |
+
_final = stream.get_final_response()
|
336 |
+
try:
|
337 |
+
prev_response_id = getattr(_final, "id", None)
|
338 |
+
except Exception:
|
339 |
+
prev_response_id = None
|
340 |
+
|
341 |
+
# If the model produced search results this round, hand them back to the controller
|
342 |
+
if last_search_indices:
|
343 |
+
return sorted(set(last_search_indices))
|
344 |
+
|
345 |
+
# Otherwise, just render whatever text we have
|
346 |
+
yield assembled_text or " ", assembled_summary or " ", "\n".join(log_lines[-400:])
|
347 |
+
return None
|
348 |
+
|
349 |
+
except Exception as e:
|
350 |
+
log_lines.append(f"[round {round_idx}] stream error: {e}")
|
351 |
+
yield f"❌ {e}", assembled_summary or "", "\n".join(log_lines[-400:])
|
352 |
+
return None
|
353 |
+
|
354 |
+
# Controller: iterate rounds until model stops searching
|
355 |
+
max_rounds = 3
|
356 |
+
round_idx = 1
|
357 |
+
while round_idx <= max_rounds:
|
358 |
+
# Start a round with any pending images we already have
|
359 |
+
next_indices = None
|
360 |
+
for final_md, summary_md, log_md in run_round(round_idx, pending_indices):
|
361 |
+
yield final_md, summary_md, log_md
|
362 |
+
|
363 |
+
# If the model called mcp_test_search, we got indices back; fetch those pages next.
|
364 |
+
# (We ignore pending_indices now—move to the model-chosen ones.)
|
365 |
+
if isinstance(next_indices, list) and next_indices:
|
366 |
+
pending_indices = next_indices
|
367 |
+
# Attach those pages in a **new** GPT-5 call using previous_response_id
|
368 |
+
round_idx += 1
|
369 |
+
continue
|
370 |
+
|
371 |
+
# No tool search results this round → we’re done
|
372 |
+
break
|
373 |
+
|
374 |
+
return
|
375 |
|
376 |
|
377 |
CUSTOM_CSS = """
|
|
|
492 |
|
493 |
with gr.Column(scale=2):
|
494 |
output_text = gr.Textbox(label="Indices (0-based)", lines=12, placeholder="[0, 1, 2, ...]")
|
|
|
|
|
495 |
|
496 |
search_button.click(search, inputs=[query_box, k_slider], outputs=[output_text])
|
|
|
497 |
|
498 |
with gr.Tab("3) Agent (Streaming)"):
|
499 |
with gr.Row(equal_height=True):
|